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Abstract

Fine-grained concurrent programs are difficult to get right,
yet play an important role in modern-day computers. We
want to prove strong specifications of such programs, with
minimal user effort, in a trustworthy way. In this paper, we
present DiaframeÐan automated and foundational verifica-
tion tool for fine-grained concurrent programs.

Diaframe is built on top of the Iris framework for higher-
order concurrent separation logic in Coq, which already
has a foundational soundness proof and the ability to give
strong specifications, but lacks automation. Diaframe equips
Iris with strong automation using a novel, extendable, goal-
directed proof search strategy, using ideas from linear logic
programming and bi-abduction. A benchmark of 24 examples
from the literature shows that the proof burden of Diaframe
is competitive with existing non-foundational tools, while
its expressivity and soundness guarantees are stronger.

CCS Concepts: • Theory of computation→ Separation

logic; Automated reasoning; Program verification.
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1 Introduction

Fine-grained concurrent programs, such as locks, reference
counters, barriers, and queues, play a critical role in modern
day programs and operating systems. Based on 15 years of
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research on concurrent separation logic [12, 13, 25, 29, 30, 32ś
35, 48, 67, 68, 74, 80, 81, 85ś89], it has become possible to
verify increasingly complicated versions of such programs.
Yet, while several tools for verification of fine-grained con-
current programs based on these logics exist, none of them
are both automated (the majority of the proof work is carried
out by the tool) and foundational (a closed proof w.r.t. the
operational semantics is produced in a proof assistant).

Tools with good automation like Caper [31], Starling [90]
and Voila [91], generally use SMT [27] or separation-logic
solvers [65, 73] as trusted oracles. They are capable of prov-
ing programs correct with relatively little help from the
user, allowing quick experimentation when designing algo-
rithms. However, they have a large trusted computing baseÐ
one needs to trust their implementation, the used solvers, the
translation of the required side conditions to the used solvers,
and sometimes also the soundness of the underpinned logic.
In particular, the results of such tools do not come with
closed proofs that can be checked independently.

Foundational tools like Iris [45, 46, 48, 52], FCSL [77] and
VST [3, 17] are embedded in a proof assistant. Hence, one
only needs to trust the implementation of the proof assistant
and the operational semantics of the programming language,
but not the solvers or underpinned logic. Foundational tools
typically provide tactics [2, 6, 17, 51, 53, 60] to hide low-level
proofs, but the bulk of the proof work needs to be spelled
out. There are two reasons for this status quo. First, founda-
tional tools cannot rely on trusted oracles, unless proofs are
reconstructed so that the proof assistant can verify them in-
dependently. Second, foundational tools usually have a rich
logic that can prove strong specifications, e.g., using impred-
icative invariants [80], for which automation has received
little attention, even in a non-foundational setting.
In this paper, we present DiaframeÐa foundational tool

for automatic verification of fine-grained concurrent pro-
grams. Diaframe extends Iris [45, 46, 48, 52]Ða framework
for interactive proofs in higher-order impredicative concur-
rent separation logic in CoqÐwith powerful tactics to per-
form the bulk of the proof work automatically. This means
we get the best of both worlds: closed proofs to underpin our
results, while needing relatively little help from the user.

An overview of the architecture of Diaframe is displayed
in Figure 1. Diaframe takes two inputs from the user (marked

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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Figure 1. Overview of the architecture of Diaframe. User input is marked in blue.

in blue)Ða program with a Hoare-style specification, and
optionally a set of user-provided hints. The program and
specification are turned into an Iris entailment that we prove
using an extendable, goal-directed proof search strategy. In-
spired by seminal work on linear logic programming [43]
and recent work on separation logic programming [76], our
strategy interprets logical connectives as proof search in-
structions. These instructions simplify and solve (a part of)
this entailment, possibly generating remaining proof obli-
gations in the process. To make progress on the remaining
obligations, our strategy looks for applicable hints.
Identifying good hints is one of the main challenges that

we face. The proof rules of expressive logics like Iris (in par-
ticular, rules for invariants and ghost state) are not syntax di-
rected and therefore hard to apply automatically. We identify
a suitable hint and entailment format that makes it possible
to mechanically find and instantiate the appropriate hints.
Iris’s rules for symbolic execution, reasoning with invariants,
and ghost state are translated into syntax-directed variants
that match the hint format. An important feature of our en-
tailment and hint format is that it supports a sufficiently
large set of Iris’s proof rules, while at the same time allowing
for an efficient implementation with little backtracking. We
achieve this by taking inspiration from bi-abduction [15],
but adding novel ideas to support Iris’s modalities and to
postpone instantiation of existentials, which are both needed
to support Iris’s invariant and ghost state mechanism.

Due to Iris’s expressive logic, which includes higher-order
quantification, impredicative invariants, and the entirety
of Coq’s logic, our proof strategy is inherently incomplete.
Nonetheless, it is able to completely solve many verification
goals that appear in Iris proofs in practice. We achieve this by
letting our proof strategy (and entailment and hint format)
focus on a subset of expressible Iris goals that often appear
in formal verification. The proof strategy makes good partial
progress on remaining goals, where it allows the user to help
out with an interactive proof or custom proof hints.

Contributions. We presentDiaframeÐa Coq library for
Iris to automate the verification of fine-grained concurrent
programs. Concretely, we make the following contributions:
• An entailment (ğ 3) and hint format (ğ 4) to capture
goals and rules in Iris.
• A goal-directed proof search strategy for Iris that can
be implemented with little backtracking in Coq (ğ5).

• A benchmark with proofs of correctness of 24 pro-
grams using fine-grained concurrency, and a compari-
son of proof-burden to Starling, Caper, and Voila (ğ6).

We start with two example verifications using Diaframe
(ğ2). After covering our contributions (ğ 3 to 6), we discuss
related work (ğ7), and limitations and future work (ğ8).

2 Diaframe by Example

In this section we showcase Diaframe by verifying a spin
lock (ğ2.1) and an Atomic Reference Counter (ARC) (ğ2.2).
For both examples we will give Hoare-style specifications
{𝑃} 𝑒 {Φ} in Iris, where 𝑃 : iProp is a separation logic as-
sertion and Φ :Val→ iProp a separation logic predicate on
values. The triple {𝑃} 𝑒 {Φ} means that for each thread that
owns resources satisfying 𝑃 , executing 𝑒 is safe, and if the ex-
ecution terminates with value𝑤 , the thread will end up own-
ing resources satisfying Φ𝑤 . The dependency on𝑤 allows
us to give expected return values in specifications. Note that
Iris uses partial, not total correctness. We use the notation
SPEC {𝑃} 𝑒 {®𝑦, RET 𝑣 ; 𝑄} for {𝑃} 𝑒 {𝑤. ∃®𝑦. ⌜𝑣 = 𝑤⌝ ∗𝑄} to
more succinctly specify return values. We are explicit about
the embedding ⌜𝜙⌝ of pure Coq proposition 𝜙 into Iris.

2.1 Verification of a Spinlock

Lines 1ś8 in Figure 2 give the implementation of a spin
lock in Iris’s default ML-like language HeapLang [45]. The
newlock method creates a new lock in the unlocked state
by allocating a new location with value false. The acquire
method uses Compare And Set (CAS) to atomically compare

the stored value of l to false, and only if these are equal, set
it to true. It returns a Boolean to indicate if the equality test
was successful. If the CAS succeeds, we have acquired the
lock. If it fails, we spin by recursively calling the acquire
method. To release the lock, the release method puts the
lock back to the unlocked state (false).

Let us now consider the specification of the lock methods,
given in lines 15ś26 in Figure 2. These specifications use the
representation predicates is lock 𝛾 lk 𝑅 and locked 𝛾 for
locks [41, 80]. Here, is lock 𝛾 lk 𝑅 expresses that the lock
at location lk protects assertions 𝑅, and locked 𝛾 expresses
that the lock is in locked state. The ghost identifier 𝛾 is used
to tie these two representation predicates together.
Given an arbitrary assertion 𝑅, the newlock method re-

turns a value lk, for which is lock 𝛾 lk 𝑅 holds. The asser-
tion is lock 𝛾 lk 𝑅 is duplicable, meaning it can be shared
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Definition newlock : val :=1

𝜆: <>, ref #false.2

Definition acquire : val :=3

rec: "acquire" "l" :=4

if: CAS "l" #false #true then #()5

else "acquire" "l".6

Definition release : val :=7

𝜆: "l", "l" ← #false.8

Definition lock inv 𝛾 l R : iProp :=9

∃ b : bool, l ↦→ #b ∗ (10

⌜b = true⌝11

∨ ⌜b = false⌝ ∗ locked 𝛾 ∗ R).12

Definition is lock 𝛾 (lk : val) R : iProp :=13

∃ l : loc, ⌜lk = #l⌝ ∗ inv N (lock inv 𝛾 l R).14

Global Program Instance newlock spec R :15

SPEC {{ R }}16

newlock #()17

{{ (lk : val) 𝛾, RET lk; is lock 𝛾 lk R }}.18

Global Program Instance acquire spec 𝛾 (lk : val) R:19

SPEC {{ is lock 𝛾 lk R }}20

acquire lk21

{{ RET #(); locked 𝛾 ∗ R }}.22

Global Program Instance release spec 𝛾 (lk : val) R:23

SPEC {{ is lock 𝛾 lk R ∗ locked 𝛾 ∗ R }}24

release lk25

{{ RET #(); True }}.26

Figure 2. Verification of a spinlock in Diaframe.

freely with multiple threads, and thus allows for multiple
threads to call acquire in parallel. Calling acquire on a lock
will result in evidence locked 𝛾 that the lock is locked, and
access to assertion 𝑅. Contrary to is lock 𝛾 lk 𝑅, the asser-
tion locked 𝛾 is not duplicable, because at most one thread
can hold the lock. To call release, we need to relinquish
both locked 𝛾 and 𝑅, and get nothing in return.

Specifications of concurrent data structures based on rep-
resentation predicates [30] allow for easy verification of
clients by abstracting away from the implementation. The
is lock 𝛾 lk 𝑅 representation predicate is particularly flexi-
ble, since it is impredicative [80]Ðmeaning that the resources
protected by the lock are described by an arbitrary separa-
tion logic predicate 𝑅 that can contain other locks, Hoare
triples, etc. To define impredicative representation predicates,
we use Iris’s invariant and ghost state mechanism.

Programs using fine-grained concurrency have multiple
threads reading and mutating shared state. In the example,
the location backing the spinlock needs to be shared so that
multiple threads can attempt to acquire the lock in paral-
lel. Since the points-to assertion ℓ ↦→ 𝑣 of separation logic
expresses exclusive ownership of the location ℓ with value 𝑣 ,
we cannot just share it between multiple threads.

To reason about shared mutable state, we use Iris’s in-

variant assertion 𝐿
N
, which says that there is a (shared)

invariant with name N governing the resources satisfying

Iris assertion 𝐿. Invariants 𝐿
N
are duplicable, which means

that the assertion 𝐿 inside the invariant is accessible by all
threads. To do this soundly, access to 𝐿 is restricted. Only
during atomic operations (like an assignment or CAS), in-
variants may be ‘opened’, which gives one temporary access
to the assertion 𝐿 in the verification of a thread. After the
atomic operation, the invariant must be ‘closed’, meaning
one must show the assertion 𝐿 still holds.

Lines 9ś14 contain the definition of is lock 𝛾 lk 𝑅. It says
that a value lk is a lock if it is equal to some location l, whose
stored value is governed by an invariant lock inv. Note that

in Coq, we write inv N L for 𝐿
N
. The invariant lock inv

states that l should point to a Boolean. If this Boolean is
true, the lock is locked, and we know nothing else since
the resources satisfying 𝑅 are currently owned by a thread
which acquired the lock. If this Boolean is false, the lock
is unlocked, and the resources satisfying 𝑅 as well as the
locked 𝛾 assertion are owned by the invariant.
The key ingredient for the verification of the spinlock is

the ghost assertion locked 𝛾 , whose rules are:1

locked-allocate

⊢ ¤|⇛∃𝛾 . locked 𝛾
locked-uniqe

locked 𝛾 ∗ locked 𝛾 ⊢ False

The first rule is used in the proof of newlock. It allows for
the allocation of locked 𝛾 with a fresh ghost name 𝛾 . This
assertion is needed to establish the invariant by proving the
right disjunct of lock inv. (The update modality ¤|⇛ signifies
a logical update to the ghost state. It will be explained in ğ3.2,
but for now, it is enough to know that after each program
statement, we can perform a logical update in the proof.)

The second rule states that locked𝛾 is a singletonÐno two
threads/resources can simultaneously satisfy this assertion.
This means that the locked 𝛾 assertion gives us information
about the global state. In the proof of release, just before
executing the store, the right disjunct of lock inv is con-
tradictory because locked 𝛾 is in the precondition. Hence,
the left disjunct must holdÐthe location l must point to the
value true, i.e., the lock is in locked state.

The general structure of verification in Diaframe is sim-
ilar for other examples: we give the implementation and
specification, and an invariant using appropriate ghost as-
sertions, after which the verification will go mostly automat-
ically. Other concurrent programs may use different ghost
assertions, but all of these assertions have three types of
rules: (a) allocation/creation rules, like locked-allocate,
(b) compatibility/interaction rules, like locked-uniqe, and
(c) mutation/update rules, of the form 𝑃 ∗𝑄 ⊢ ¤|⇛𝑅 ∗ 𝑆 . We
will see some update rules in the next example.

1For readers familiar with Iris, we simply define locked 𝛾 ≜ Excl ()
𝛾
.
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Context (P : Qp → iProp) {HP : Fractional P}.1

Definition mk arc : val :=2

𝜆: <>, ref #1.3

Definition count : val :=4

𝜆: "a", ! "a".5

Definition clone : val :=6

𝜆: "a", FAA "a" #1 ;; #().7

Definition drop : val :=8

𝜆: "a", (FAA "a" #-1) = #1.9

Definition unwrap : val :=10

rec: "unwrap" "a" :=11

if: CAS "a" #1 #0 then #()12

else "unwrap" "a".13

Definition arc inv 𝛾 l : iProp :=14

∃ (z : Z), l ↦→ #z ∗ (15

⌜0 < z⌝%Z ∗ counter P 𝛾 (Z.to pos z)16

∨ ⌜z = 0⌝ ∗ no tokens P 𝛾).17

Definition is arc 𝛾 (v : val) : iProp :=18

∃ (l : loc), ⌜v = #l⌝ ∗ inv N (arc inv 𝛾 l).19

Global Program Instance mk arc spec :20

SPEC {{ P 1 }}21

mk arc #()22

{{ (v : val) 𝛾, RET v; is arc 𝛾 v ∗ token P 𝛾 }}.23

Global Program Instance count spec 𝛾 (v : val) :24

SPEC {{ is arc 𝛾 v ∗ token P 𝛾 }}25

count v26

{{ (p : Z), RET #p; ⌜0 < p⌝%Z ∗ token P 𝛾 }}.27

Global Program Instance clone spec 𝛾 (v : val) :28

SPEC {{ is arc 𝛾 v ∗ token P 𝛾 }}29

clone v30

{{ RET #(); token P 𝛾 ∗ token P 𝛾 }}.31

Global Program Instance drop spec 𝛾 (v : val) :32

SPEC {{ is arc 𝛾 v ∗ token P 𝛾 }}33

drop v34

{{ (b : bool), RET #b; ⌜b = false⌝ ∨35

⌜b = true⌝ ∗ P 1 ∗ no tokens P 𝛾 }}.36

Next Obligation.37

destruct (decide (x2 = 1)); iStepsS.38

Qed.39

Global Program Instance unwrap spec 𝛾 (v : val) :40

SPEC {{ is arc 𝛾 v ∗ token P 𝛾 }}41

unwrap v42

{{ RET #(); P 1 ∗ no tokens P 𝛾 }}.43

Figure 3. Verification of an ARC in Diaframe.

2.2 Verification of an ARC

Wewill now verify a version of an Atomic Reference Counter
(ARC), similar to the one verified by Starling [90] and the
one used in the Rust standard library [54]. An ARC can be
used to safely give multiple threads read-access to a resource,
while being able to recover write-access once all read-access
references have been dropped. Lines 2ś13 in Figure 3 give the

implementation. Values of ARC are locations that store an
integer containing the number of read-access references. The
mk arcmethod allocates a location with value 1, i.e., an ARC
with one read-access reference. The count method gives
the number of read-access references. The clone method
increments the reference count with 1, using the atomic
Fetch And Add (FAA) instruction, while drop decrements
the reference count with 1. The unwrap method is like drop
in that it will decrement the reference countÐbut by using
a CAS operation to set the reference count from 1 to 0, it
ensures that it destroys the last reference, and spins as long
as other references have not been dropped.
To give a specification of the methods of ARC, we make

use of shareable assertions, which are typically modeled with
fractional permissions [11]. In Iris, shareable assertions are
modeled as Iris predicates 𝑃 : Q𝑝 → iProp, where iProp is the
type of Iris assertions, and Q𝑝 ≜ {𝑞 ∈ Q | 𝑞 > 0}. Predicates
𝑃 of this type must satisfy 𝑃 𝑞1 ∗ 𝑃 𝑞2 ⊣⊢ 𝑃 (𝑞1 + 𝑞2) to be
called shareable (or Fractional in Coq). An example of
a shareable assertion is the fractional mapsto connective
ℓ ↦→𝑞 𝑣 . If 𝑞 = 1, it denotes full ownership of (or write-
access to) heap-location ℓ . If 0 < 𝑞 < 1, it denotes fractional
ownership of (or read-access to) heap-location ℓ .
As shown on line 1 in Figure 3, the whole verification is

abstracted over a shareable assertion 𝑃 that describes the
resources that are being protected by the ARC. The specifica-
tion of the methods can be found in lines 20ś43. Like for the
spinlock, we use several representation predicates. The dupli-
cable assertion is arc 𝛾 𝑣 says that a value 𝑣 is an ARC. The
non-duplicable assertion token 𝑃 𝛾 indicates a read-access
reference to 𝑃 . The non-duplicable assertion no tokens 𝑃 𝛾

indicates that write-access has been recovered, i.e., that no
read-access tokens token 𝑃 𝛾 exist.

With these predicates at hand, the specification of mk arc

requires 𝑃 1 (write-access) and returns a value that is arc

guarding 𝑃 , alongwith a single read-access token. The count
method is essentially a no-op, but shows that if we have a
single-read access token, the reference count must be posi-
tive. The method clone duplicates a read-access tokenÐit
requires one of them, and returns two. The method drop de-
stroys a token, and either returns nothing, or, if this was the
last token, write-access 𝑃 1, along with the knowledge that
no tokens exist. The unwrap method, when it terminates,
guarantees retrieving write-access 𝑃 1 and no tokens.
Let us look at the definition of is arc in lines 14ś19 in

Figure 3. Similar to locked𝛾 , we treat token and no tokens

abstractly (these are defined via Iris’s extensible ghost state
mechanism, see our appendix [64] for the definition), and
show only the allocation, interaction and update rules in
Figure 4. As witnessed by token-access, these ghost-state
assertions are used to convert fractional permissions into
counting permissions [9], which are more natural for ARC.

Similar to the spinlock, we define a value to be is arc if it
is a location whose stored value is governed by an invariant.
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token-allocate

𝑃 1 ⊢ ¤|⇛∃𝛾 . counter 𝑃 𝛾 1 ∗ token 𝑃 𝛾

token-interact

no tokens 𝑃 𝛾 ∗ token 𝑃 𝛾 ⊢ False

token-mutate-incr

counter 𝑃 𝛾 𝑝 ⊢ ¤|⇛ (counter 𝑃 𝛾 (𝑝 + 1) ∗ token 𝑃 𝛾)

token-mutate-decr

𝑝 > 1

counter 𝑃 𝛾 𝑝 ∗ token 𝑃 𝛾 ⊢ ¤|⇛counter 𝑃 𝛾 (𝑝 − 1)

token-mutate-delete-last

counter 𝑃 𝛾 1 ∗ token 𝑃 𝛾 ⊢
¤|⇛ (no tokens 𝑃 𝛾 ∗ no tokens 𝑃 𝛾 ∗ 𝑃 1)

token-access

token 𝑃 𝛾 ⊢ ∃𝑞. 𝑃 𝑞 ∗ (𝑃 𝑞 −∗ token 𝑃 𝛾)

Figure 4. Rules for the counter ghost assertions.

This invariant arc inv tells us that the location points to
some integer 𝑧, which satisfies: (1) 𝑧 = 0, and we know that
no tokens currently exist, or (2) 𝑧 > 0, and we own resources
satisfying counter 𝑃 𝛾 𝑧. The counter 𝑃 𝛾 𝑝 assertion states
the knowledge that precisely 𝑝 > 0 tokens currently existÐ
which matches what we want ℓ ↦→ 𝑝 to mean.

To prove the specification of the count method, we use
token-allocate, which allows us to establish the left dis-
junct of arc inv. For proving the specification of count,
we rely on token-interact to prove that the right disjunct
of arc inv is contradictory. For the specification of clone,
we again need token-interact. When closing the invari-
ant, we need to apply token-mutate-incr at the right mo-
ment to change the obtained counter 𝑃 𝛾 𝑝 to the required
counter 𝑃 𝛾 (𝑝 + 1). This also gives us the extra token that
we need in the postcondition.

Integration with interactive proofs. In the verification
of drop, Diaframe encounters a goal it cannot solve auto-
matically, and gets stuck. The user is presented with the
following (slightly simplified) proof state in the Iris Proof
Mode [51, 53], where they can use Coq or Iris tactics to help:

H : 0 < x2

--------------------------------------------------------------------------------

"H1" : inv N (arc inv 𝛾 l)

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –□

"H2" : token P 𝛾

"H5" : counter P 𝛾 (Z.to pos x2)

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – ∗




(

|⇛⊤\↑𝑁 ⊤\↑𝑁
)





⌜0 < x2 + -1⌝ ∗ counter 𝑃 𝛾 (Z.to pos (x2 + -1))

∨ ⌜x2 + -1 = 0⌝ ∗ no tokens 𝑃 𝛾

(∗) |⇛⊤ ⊤ WP #x2 = #1 {{ v, . . . }}

The statement below – – –∗ indicates our current goal, and
contains a disjunction. Both sides of the disjunction contain a

pure statement ⌜𝜙⌝, but neither of these follow from the rele-
vant hypothesis H. On inspection, we need to distinguish two
cases: x2 = 1 and x2 > 1. In the first case, our token was the
last one, and we need to use token-mutate-delete-last

to finish the proof. In the second case, other tokens remain,
and we need to use token-mutate-decr.

In Figure 3, the manual step consists precisely of the case
distinction between x2 = 1 and x2 > 1, after which Dia-
frame’s iStepsS can finish the proof. Even though Diaframe
could not figure out the required case distinction automati-
cally, it makes good partial progress here. This is because the
automation only performs limited backtracking, and simply
stops when it encounters a goal it cannot make progress on.

Generality. The ghost assertions token, no token and
counter are not connected to a memory location and are
thus not specific for the verification of ARC. We also use
them in the verification of e.g., reader-writer locks. The only
connection between these assertions and the ARC lies in the
definition of the invariant arc inv, which ties the physical
state of the ARC to an appropriate ghost-state. The rules
for the assertions in Figure 4 are available to the Diaframe
proof search strategy, and applying them requires no extra
annotations, except for the manual case distinction for drop.

3 Diaframe’s Entailment Format

In this section we explain some of the challenges one faces
when automating proofs of fine-grained concurrent pro-
grams in Iris. We start with some background on verifying
weakest preconditions of sequential programs using sym-
bolic execution (ğ3.1), as commonly done in interactive and
automatic tools in proof assistants [20, 53, 76]. We then ex-
tend this approach with support for Iris’s invariant mecha-
nism to verify fine-grained concurrent programs (ğ3.2). We
conclude with an overview of the Diaframe entailment for-
mat and proof strategy (ğ 3.3), which serves as a starting
point for the description of our hint format (ğ4).

3.1 Goal-Directed Reasoning with WP

Hoare triples are not a primitive of Iris, they are defined in
terms of weakest preconditions:

{𝑃} 𝑒 {Φ} ≜ 𝑃 ⊢ wp 𝑒 {Φ}.

To get some intuition for the semantics of wp 𝑒 {Φ}, assume
for a moment that 𝑃 and𝑄 are predicates on heaps (ignoring
Iris’s ghost state and step-indexing), and Φ is a predicate on
values and heaps. Entailment 𝑃 ⊢ 𝑄 means that for every
heap ℎ, if 𝑃 ℎ holds, then 𝑄 ℎ holds. The assertion wp 𝑒 {Φ}

describes the heaps for which execution of 𝑒 is safe (cannot
get stuck), and if 𝑒 terminates with value 𝑣 and heap ℎ′, then
Φ 𝑣 ℎ′ holds. Defining {𝑃} 𝑒 {Φ} as above then indeed gives
the Hoare triple its intended and intuitive semantics.
Weakest preconditions make it possible to decouple the

precondition from the Hoare triple, and view it as a regular
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wp-value

Φ 𝑣 ⊢ wp 𝑣 {Φ}

wp-bind

wp 𝑒
{

𝑤. wp 𝐾 [𝑤] {Φ}
}

⊢ wp 𝐾 [𝑒] {Φ}

wp-frame

𝑅 ∗ wp 𝑒 {Φ} ⊢ wp 𝑒 {𝑣 . 𝑅 ∗ Φ 𝑣}

wp-mono

∀𝑣 . Ψ 𝑣 ⊢ Φ 𝑣

wp 𝑒 {Ψ} ⊢ wp 𝑒 {Φ}

wp-faa

ℓ ↦→ 𝑧1 ⊢ wp (FAA ℓ 𝑧2) {𝑤. ⌜𝑤 = 𝑧1⌝ ∗ ℓ ↦→ (𝑧1 + 𝑧2)}

Figure 5. Some of Iris’s rules for weakest preconditions.

separation logic entailment. In particular, they give us access
to Iris’s existing infrastructure [51, 53] for proving entail-
ments. However, Iris’s primitive rules for weakest precondi-
tions in Figure 5 are not syntax directed and can thus not be
directly applied in an interactive or automatic proof search
strategy. Throughout this section, we focus on transforming
the rule wp-faa into a syntax-directed version. Recall that
FAA is used in the clone and drop methods of ARC (ğ2.2).
Suppose we are proving the following entailment:

Δ ⊢ wp (FAA ℓ 𝑧) {Φ}.

(From now on, we will often put an environment Δ before the
turnstile. The environment Δ is a list of assertions 𝑃1, . . . , 𝑃𝑛 ,
for which Δ ⊢ 𝑄 iff 𝑃1 ∗ · · · ∗ 𝑃𝑛 ⊢ 𝑄 .)
We want to prove this entailment by applying wp-faa,

but we are not yet in shape to do so. That is because Δ will
typically not be just ℓ ↦→ 𝑧1, and Φ will typically not be
the precise postcondition of wp-faa. Hence, to apply ‘small
footprint’ specifications likewp-faawe need to find a ‘frame’
𝑅 and a value 𝑧1, such that Δ ⊢ 𝑅 ∗ ℓ ↦→ 𝑧1. We can then
use a combination of wp-faa, wp-frame and wp-mono, to
transform our entailment into 𝑅 ∗ ℓ ↦→ (𝑧1 + 𝑧2) ⊢ Φ 𝑧1.

Instead of having to determine the frame 𝑅 in advance, one
can construct an alternative rule for goal-directed reasoning,
which will be easier to apply automatically:

wp-faa-ramify

Δ ⊢ 𝑙 ↦→?𝑧1 ∗
(

∀𝑣 . (⌜𝑣 = ?𝑧1⌝ ∗ ℓ ↦→ (?𝑧1 + 𝑧2)) −∗ Φ 𝑣
)

Δ ⊢ wp (FAA ℓ 𝑧2) {Φ}

In this shape, the rule is an instance of the ramified frame

rule [20, 42]. Note that we have put a question mark in front
of 𝑧1 to signify that 𝑧1 will be an existential variable (evar)
at rule applicationÐwe should be able to find a 𝑧1 for which
this is provable, but do not yet know which one it will be.
When we find an hypothesis of shape ℓ ↦→ 𝑧 in Δ, we can
unify 𝑧1 with 𝑧 and continue.

We can generalize the rule wp-faa-ramify to any Hoare-
style specification of an expression 𝑒:

sym-ex

{𝑃} 𝑒 {Ψ} Δ ⊢ 𝑃 ∗ (∀𝑣 . Ψ 𝑣 −∗ wp 𝐾 [𝑣] {Φ})

Δ ⊢ wp 𝐾 [𝑒] {Φ}

This rule additionally incorporates Iris’s rulewp-bind, which
allows the expression 𝑒 to appear inside a call-by-value eval-
uation context 𝐾 , instead of at the top-level.

Supposing we can prove separating conjunctions, sym-ex
gives rise to a symbolic-execution based proof search strat-
egy for straight-line sequential code. Suppose our goal is
Δ ⊢ wp 𝑒 {Φ}. If 𝑒 is a value 𝑣 , apply wp-value and prove
Δ ⊢ Φ 𝑣 . Else, find an evaluation context 𝐾 and subexpres-
sion 𝑒 ′ with 𝑒 = 𝐾 [𝑒 ′], and a specification {𝑃} 𝑒 ′ {Ψ} . Apply
sym-ex, prove the separating conjunction, introduce vari-
ables, introduce the left-side of the magic wand, and repeat.

3.2 Goal-Directed Reasoning with Invariants

We will now extend the naive proof search strategy from
ğ3.1 with support for Iris’s invariant mechanism to handle
programs with fine-grained concurrency. Concretely, we will
present a rule that extends sym-ex, which can also be used
in case the precondition 𝑃 is inside an invariant (as is the
case for all examples in ğ2). We will first recapitulate Iris’s
original proof rule for accessing invariants:

inv-open-wp

Δ, 𝐿
N
, ⊲ 𝐿 ⊢ wpE\N 𝑒 {𝑣 . ⊲ 𝐿 ∗ Φ 𝑣} atomic 𝑒 N ⊆ E

Δ, 𝐿
N
⊢ wpE 𝑒 {Φ}

This rule is quite a mouthful, so let us go over it step by step.
First, to deal with invariants, weakest preconditions in Iris
wp
E
𝑒 {Φ} have a mask annotation E, signifying the set of

names of invariants that can be opened. This is necessary
to ensure invariants are not opened more than once (i.e., to
avoid reentrancy, which is unsound). Omitted masks are ⊤,
meaning all invariants can still be opened.

Suppose that we have an invariant 𝐿
N
, and are verifying

an atomic expression 𝑒 . Rule inv-open-wp states that we are
allowed to look inside the invariant and obtain 𝐿 in the proof
context, but then must show that 𝐿 still holds in the postcon-
dition of the WP. After we have opened the invariant with
nameN , the mask changes to E \N so that we cannot open
the invariant twice. The later modality (⊲) [4, 66] is needed
for technical reasons caused by the fact that invariants are
impredicative [46, 80], i.e., the resource 𝐿 in an invariant can
be any resource, including invariants and weakest precon-
ditions. Handling later modalities involves some additional
bookkeeping, which Diaframe performs automatically, but
we gloss over in this paper.

We now show why our sym-ex rule for symbolic execu-
tion from ğ3.1 needs to be extended for programs involving
fine-grained concurrency. Consider the FAA operation in the
clone method of the ARC (ğ2.2). The challenge of verifying
this method is that the ℓ ↦→ we need as part of the precon-
dition for FAA is not in the proof context, but in an invariant

∃(𝑧 : Z). ℓ ↦→ 𝑧 ∗ 𝐽 𝑧
N
. When we apply sym-ex eagerly, we

lose the ability to open invariants using inv-open-wp.
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One approach is to try to make progress with sym-exÐif
this is possible, we are alright. If not, we backtrack, and open
an invariant with inv-open-wp, and retry. This is similar
to the approach employed by Caper [31]. We do not take
a backtracking approach in Diaframe since it does not mix
nicely with interactive proofs.

We therefore present an extended symbolic execution rule,
sym-ex, which allows us to open invariants lazily:

sym-ex-fupd-exist

∀®𝑥 . {𝑃} 𝑒 {Ψ} atomic 𝑒 ∨ E1 =?E2

Δ ⊢ |⇛E1 ?E2 ∃®𝑥 . 𝑃 ∗
(

∀𝑤. Ψ𝑤 −∗ |⇛?E2 E1wpE1 𝐾 [𝑤] {Φ}
)

Δ ⊢ wpE1 𝐾 [𝑒] {Φ}

This rule contains Iris’s fancy update modality |⇛E1 E2 , and a
quantified Hoare triple ∀®𝑥 . {𝑃} 𝑒 {Ψ} .

The fancy update modality |⇛E1 E2 is used in Iris’s defi-
nition of weakest preconditions, and is the component that

makes opening invariants possible. Semantically, |⇛E1 E2 𝑃

means: assuming all invariants with names in E1 hold, then
𝑃 holds and additionally all invariants with names in E2 hold.
To work with the fancy update, Iris has the following rules:

inv-open-fupd

N ⊆ E

𝐿
N
⊢ |⇛E E\N

(

⊲ 𝐿 ∗
(

⊲ 𝐿 −∗ |⇛E\N E True
)

)

bupd-intro

𝑃 ⊢ ¤|⇛𝑃

bupd-fupd

¤|⇛𝑃 ⊢ |⇛E E 𝑃

fupd-elim

𝑃 ⊢ |⇛E1 E2𝑄 Δ, 𝑄 ⊢ |⇛E2 E3𝑅

Δ, 𝑃 ⊢ |⇛E1 E3𝑅

The inv-open-fupd rule makes the semantics of invariants
precise: by removing N from the mask, we get access to 𝐿,
and if we wish to restore the mask, we must hand back 𝐿 via
the closing update (⊲ 𝐿 −∗ |⇛E\N E True). The rule fupd-elim
allows us to compose fancy updates, and by combining
bupd-fupd and bupd-intro we can introduce the last fancy
update when done. Note that bupd-fupd and fupd-elim en-
able us to perform logical updates (like those in Figure 4)
when the goal contains a fancy update after the turnstile.

The quantified Hoare triple ∀®𝑥 . {𝑃} 𝑒 {Ψ} states that the
Hoare triple {𝑃} 𝑒 {Ψ} holds for all instantiations of the
auxiliary variables in ®𝑥 . Here, 𝑃 should and Ψ may refer to
the variables in ®𝑥 . For FAA, we have:

∀𝑧1. {ℓ ↦→ 𝑧1} FAA ℓ 𝑧2 {𝑤. ⌜𝑤 = 𝑧1⌝ ∗ ℓ ↦→ (𝑧1 + 𝑧2)} .

The essential feature of sym-ex-fupd-exist is that once
we apply the rule, we retain the ability to open (any number
of) invariants through a combination of the rules fupd-elim
and inv-open-fupd. Our new rule is strictly stronger than
the rule sym-ex from ğ3.1Ðthe update modalities can simply
be introduced using bupd-fupd and bupd-intro, and the
existentials can be instantiated with evars.
We now show why the existential quantification in the

new rule is necessary. Let us try to use sym-ex-fupd-exist

wrongly by instantiating existentials eagerly in a goal that
arises during the verification of an FAA in ARC (ğ2.2):

ℓ ↦→ 𝑧, ⊲ 𝐽 𝑧, . . . ⊢ |⇛⊤\N ?E ℓ ↦→?𝑧1 ∗ . . .

⊲(∃(𝑧 : Z) . ℓ ↦→ 𝑧 ∗ 𝐽 𝑧), . . . ⊢ |⇛⊤\N ?E ℓ ↦→?𝑧1 ∗ . . .

∃(𝑧 : Z). ℓ ↦→ 𝑧 ∗ 𝐽 𝑧
N
⊢ |⇛⊤ ?E ℓ ↦→?𝑧1 ∗ . . .

∃(𝑧 : Z). ℓ ↦→ 𝑧 ∗ 𝐽 𝑧
N
⊢ |⇛⊤ ?E ∃𝑧 ′. ℓ ↦→ 𝑧 ′ ∗ . . .

∃(𝑧 : Z). ℓ ↦→ 𝑧 ∗ 𝐽 𝑧
N
⊢ wp 𝐾 [FAA ℓ 1] {Φ}

One should read this proof derivation from bottom to top.
When encountering an FAA, we apply sym-ex-fupd-exist,
but (wrongly) perform an eager instantiation of the existen-
tial 𝑧 ′ with an evar ?𝑧1. Then we use inv-open-fupd and
fupd-elim to open the invariant. The final step uses some
properties of the later modality to eliminate the existential
and the later around ℓ ↦→ 𝑧. One might think we are now
done: just unify ?𝑧1 with 𝑧 and ?E with ⊤ \ N , and con-
tinue! However, this is not soundÐthe evar ?𝑧1 cannot be
unified with 𝑧, since 𝑧 was introduced after 𝑧1. Stated in other
words, we could not have chosen 𝑧1 to be equal to 𝑧, since at
that point 𝑧 was not in our context. To correctly deal with
existentials, the Diaframe proof search strategy delays the
instantiation of existentials.

3.3 Overview of the Diaframe Strategy

To automatically prove program specifications∀®𝑥 . {𝑃} 𝑒 {Φ} ,
Diaframe’s proof strategy repeatedly performs the following
actions (a formal presentation is given in ğ5):

1. If the goal is Δ ⊢ ∀𝑥 . 𝐺 or Δ ⊢ 𝑈 −∗ 𝐺 , introduce
the ∀ or −∗. Then łcleanž the hypothesis 𝑈 by (a)
eliminating separating conjunctions, disjunctions, and
existentials, (b) moving pure assertions ⌜𝜙⌝ into the
Coq context, (c) merging assertions (e.g., ℓ ↦→𝑞 𝑤 and
ℓ ↦→𝑝 𝑣 become ℓ ↦→𝑝+𝑞 𝑣 and 𝑣 = 𝑤 ), (d) deriving
contradictions (e.g., using locked-uniqe).

2. If the goal is Δ ⊢ wp 𝑣 {Φ}, with 𝑣 a value, continue
with Δ ⊢ |⇛⊤ ⊤

Φ 𝑣 .
3. If the goal is Δ ⊢ wp 𝐾 [𝑒] {Φ}, use our new symbolic

execution rule sym-ex-fupd-exist. Our new goal has

the shape Δ ⊢ |⇛E1 E2 ∃®𝑥 . 𝐿 ∗𝐺 .

4. If the goal is Δ ⊢ |⇛E1 E2 ∃®𝑥 . 𝐿 ∗𝐺 , use associativity of

separating conjunction to rewrite it into |⇛E1 E2 ∃®𝑥 . 𝐴∗
𝐺 ′ where 𝐴 is an atom. Pure conditions ⌜𝜙⌝ that ap-
pear in the process are solved with Coq tactics like
lia. We make progress on 𝐴 by finding a hint.

For this strategy to be effective, finding hints (in the last
step) is crucial. These hints need to make sure that the result-
ing goal is again of one of the above entailment formats so
the strategy can make repeated progress. When operating on

entailments of format Δ ⊢ |⇛E1 E2 ∃®𝑥 . 𝐿∗𝐺 , it is essential that
modalities and existentials are only introduced/instantiated
when the right invariants have been opened and the neces-
sary ghost updates have been performedÐnot earlier.
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The Diaframe proof strategy is inspired by the idea of in-
terpreting logical connectives as instructions to control the
proof search, as done in the seminal work on linear logic pro-
gramming [19, 43] and recent work on the separation logic
programming language Lithium [76]. Other recent work by
Chlipala [21, 22] has also shown that using the syntax of the
goal to guide proof search works well for automatic founda-
tional verification. The inspiration by Lithium can be seen
most clearly in the reversible actions described in Items (a)
and (b)Ðthese are the same as those performed by Lithium.
The key difference is that we do not operate on top-level
connectives, but on connectives that appear below a modal-
ity and a number of existentials, to support Iris’s invariants
and ghost state.

4 Diaframe’s Hint Format

In this section, we describe the process of finding hints. We
consider the following kinds of base hints: (a) hints for ghost
state such as those corresponding to the rules in Figure 4,
(b) hints for language-specific connectives such as the ↦→
connective, and (c) user-defined hints to guide the proof of a
specific program in case the automation falls short.

There are two ways how hints can be selected. First, goal-
and-hypothesis directed hints use the shape of the goal and
the shape of a hypothesis as keys. Examples are hints for
mutating ghost state. Second, last-resort goal-directed hints
are used if no hints that key on a hypothesis can be found.
Examples are invariant allocation and ghost state allocation.
Hints are specified using a hint format (ğ4.1) that is in-

spired by the technique of bi-abduction [15]. Aside from
the base hints (ğ4.2), Diaframe provides recursive hints to
close the base hints under connectives like invariants, magic
wands, and separating conjunctions (ğ4.3).

4.1 Bi-Abduction Hints

The hint format of Diaframe is as follows:

𝐻 ∗ [®𝑦;𝐿] �
[

|⇛E1 E2
]

®𝑥 ;𝐴 ∗ [𝑈 ] ≜

∀®𝑦.
(

𝐻 ∗ 𝐿 ⊢ |⇛E1 E2 (∃®𝑥 . 𝐴 ∗𝑈 )
)

Hints use a hypothesis 𝐻 and goal 𝐴 as key/input. Outputs
are denoted between [ ] syntax: 𝐿 is a (possibly existentially
quantified) side condition, while 𝑈 is the residue we obtain
after using the hint. The hypothesis 𝐻 is 𝜀1 for a last-resort
hint. The assertion 𝜀1 is an opaque marker whose semantics
is True, but is treated differently by the proof search strategy.

It is instructive to check the scope of the existentials. The
premise𝐻 is a given hypothesis, so ®𝑥 and ®𝑦 do not occur in𝐻 .
The conclusion𝐴 is a given existential goal, so ®𝑥 occurs in𝐴,
but ®𝑦 does not. The side condition 𝐿 is existentially quantified
with ®𝑦. The residue𝑈 is allowed to contain both ®𝑥 and ®𝑦 so
it can be related to the side condition 𝐿 and the goal 𝐴.

We also call Diaframe’s hints łbi-abduction hintsž because
in essence, they are bi-abduction [15] behind a modality and

existentials. The bi-abduction problem in separation logic
asks to find, given an hypothesis 𝐻 and goal 𝐴, a ‘frame’
and ‘antiframe’ such that 𝐻 ∗ ?antiframe ⊢ 𝐴 ∗ ?frame. Our
hints’ shape is also similar to the residuation judgment from
Cervesato et al. [19], but has an additional frame.

We can apply a Diaframe bi-abduction hint as follows:

biabd-hint-apply

𝐻 ∗ [®𝑦;𝐿] �
[

|⇛E3 E2
]

®𝑥 ;𝐴 ∗ [𝑈 ]

Δ ⊢ |⇛E1 E3 ∃®𝑦. 𝐿 ∗ (∀®𝑥 . 𝑈 −∗ 𝐺)

Δ, 𝐻 ⊢ |⇛E1 E2 ∃®𝑥 . 𝐴 ∗𝐺

The Diaframe implementation will go over the hypotheses
𝐻 in the context Δ from left to right (with 𝜀1 last) until it

finds a hint 𝐻 ∗ [®𝑦;𝐿] �
[

|⇛E3 E2
]

®𝑥 ;𝐴 ∗ [𝑈 ] in the hint
database. This involves some backtracking, but only locallyÐ
whenever a hint (and thus a side condition 𝐿 and residue
𝑈 ) has been found for a hypothesis 𝐻 , we use that hint and
will never backtrack to consider a different choice. Note that
after applying the rule, the resulting entailment has the same
format, allowing for repeated applications of hints.

4.2 Base Hints

Example 1: Ghost state mutation. We transform the
rule token-mutate-decr (which is used to verify the drop
method of ARC in ğ2.2) into the following hint:

counter 𝑃 𝛾 𝑝 ∗ [ ; token 𝑃 𝛾 ∗ ⌜𝑝 > 1⌝] �
[

|⇛E E
]

; counter 𝑃 𝛾 (𝑝 − 1) ∗ [True]

If we use biabd-hint-apply with this hint, we get:

Δ ⊢ |⇛E E
token 𝑃 𝛾 ∗ ⌜𝑝 > 1⌝ ∗ (True −∗ 𝐺)

Δ, counter 𝑃 𝛾 𝑝 ⊢ |⇛E E
counter 𝑃 𝛾 (𝑝 − 1) ∗𝐺

Here we see that to decrement the counter, we need to solve
the side condition token 𝑃 𝛾 , before we can continue with𝐺 .

Example 2: Invariant allocation. In Iris, invariants are

allocated using the rule ⊲ 𝐿 ⊢ |⇛E E 𝐿
N
, whichwe transform

into the following hint:

𝜀1 ∗ [ ; ⊲ 𝐿] �
[

|⇛E E
]

; 𝐿
N
∗
[

𝐿
N
]

.

Due to the 𝜀1, this is a last-resort goal-directed hint. We do
not make it hypothesis directed, because ⊲ 𝐿 will usually not
be precisely in the context. Since invariants are duplicable

we give back 𝐿
N
in the residue, so that it can be used again.

Example 3: Ghost state allocation. We transform the
rule locked-allocate (which is used to verify the newlock
method in ğ2.1) into the following hint:

𝜀1 ∗ [ ; True] �
[

|⇛E E
]

𝛾 ; locked 𝛾 ∗ [True] .

Due to the 𝜀1, this is again a last-resort goal-directed hint.
That is simply because the rule has no premise.
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Example 4: Points-to assertion. We have specific hints
for HeapLang’s fractional points-to assertion ℓ ↦→𝑞 𝑣 :

ℓ ↦→𝑞 𝑣1 ∗ [ ; ⌜𝑣1 = 𝑣2⌝] �
[

|⇛E E
]

; ℓ ↦→𝑞 𝑣2 ∗ [True] .

This hint says that if we have a points-to for ℓ , but need one
with another value, we should prove that both values are
equal. The following hint handles different fractions:

𝑞1 < 𝑞2

ℓ ↦→𝑞1 𝑣1 ∗
[

𝑣3; ⌜𝑣1 = 𝑣2⌝ ∗ ℓ ↦→(𝑞2−𝑞1) 𝑣3
]

�
[

|⇛E E
]

; ℓ ↦→𝑞2 𝑣2 ∗ [⌜𝑣1 = 𝑣3⌝]

This hint applies if the fraction 𝑞2 in the goal is bigger than
the fraction 𝑞1 in the hypothesis, and hence has the side con-
dition ℓ ↦→(𝑞2−𝑞1) 𝑣3. Note that 𝑣3 is existentially quantified,
meaning that the side condition can be established for any
value. This is sound by the agreement property of ↦→. This
generality is used in the verification of e.g., the CLH-lock.
There is a dual hint for the case 𝑞1 > 𝑞2.

4.3 Recursive Hints

It is often the case that a base hint almostÐbut not preciselyÐ
matches. The premise might appear under a magic wand or
in an invariant, or the goal might provide a specific witness
while looking for an existential. Diaframe therefore includes
a number of recursive hints to close the base hints under the
connectives of higher-order separation logic. For example:

𝑈 ∗ [®𝑧;𝐿2] �
[

|⇛E1 E2
]

®𝑦;𝐴 ∗ [𝑈 ]

(𝐿1 −∗ 𝑈 ) ∗ [®𝑧;𝐿2 ∗ 𝐿1] �
[

|⇛E1 E2
]

®𝑦;𝐴 ∗ [𝑈 ]

This rule states that if there is a hint from the conclusion 𝑈
of the wand to the goal𝐴, then there is a hint from the wand
𝐿1 −∗ 𝑈 itself, where the premise 𝐿1 of the wand is added to
the side condition 𝐿2. A more complicated recursive hint is
the rule for invariants:2

⊲ 𝐿1 ∗ [®𝑧;𝐿2] �
[

|⇛E\N E\N
]

®𝑦;𝐴 ∗ [𝑈 ]

𝐿1
N
∗ [®𝑧;𝐿2 ∗ ⌜N ⊆ E⌝] �
[

|⇛E E\N
]

®𝑦;𝐴 ∗
[

𝑈 ∗ (⊲ 𝐿1 −∗ |⇛E\N E 𝜒 )
]

This rule states that there is a hint from an invariant 𝐿1
N

to a goal 𝐴, if there is a hint from the contained assertion 𝐿1
to that atom. We get N ⊆ E as an additional side condition,

and receive the closing update (⊲ 𝐿1 −∗ |⇛E\N E 𝜒 ) as the
residue. Similar to 𝜀1, the assertion 𝜒 is an opaque marker
whose semantics is True, but is treated differently by the
proof search strategy to enforce closing invariants.

5 Formal Description of the Proof Strategy

In this section we will present an excerpt of the formal gram-
mar of Diaframe (ğ5.1), and a number of cases of the formal
proof search strategy (ğ5.2). We then present an extension
of Diaframe to handle disjunctions (ğ5.3).

2In the implementation, this rule is a consequence of other recursive rules.

5.1 Grammar of Diaframe

We provide a representative subset of the grammar (a full
description can be found in the appendix [64]):

atoms 𝐴 ::= wp 𝑒 {𝑣 . 𝐿} | 𝜒 | 𝐿
N
| . . .

left-goals 𝐿 ::= ⌜𝜙⌝ | 𝐴 | 𝐿 ∗ 𝐿 | ∃𝑥 . 𝐿

unstructureds 𝑈 ::= ⌜𝜙⌝ | 𝐴 | 𝑈 ∗𝑈 | ∃𝑥 . 𝐿

| ∀𝑥 . 𝑈 | 𝐿 −∗ 𝑈 | |⇛E1 E2𝑈

extended 𝐻 ::= 𝜀1 | 𝑈

clean hypotheses 𝐻𝐶 ::= 𝐴 | ∀𝑥 . 𝑈 | 𝐿 −∗ 𝑈 | |⇛E1 E2𝑈

environments (1) Γ ::= ∅ | Γ, 𝑥 | Γ, 𝜙

environments (2) Λ ::= ∅ | Λ, 𝐻𝐶 Δ ::= Λ, 𝜀1

goals 𝐺 ::= ∀𝑥 . 𝐺 | 𝑈 −∗ 𝐺 | wp 𝑒 {𝑣 . 𝐿}

| |⇛E1 E2 𝐿 | ∥ |⇛E1 E2∥ ∃®𝑥 . 𝐿 ∗𝐺

The entailments we wish to solve are of the form Γ;Δ ⊢ 𝐺 .
The atoms𝐴 by default only consist of weakest preconditions

wp 𝑒 {𝑣 . 𝐿}, the marker 𝜒 (ğ4.3) and invariants 𝐿
N
. The el-

lipsis (. . .) indicates that the set of atoms may be extended by
libraries, adding language-specific constructs like ℓ ↦→ 𝑣 or
ghost assertions like locked 𝛾 . The definition of Δ explicitly
sets the last-resort marker 𝜀1 as the last hypothesis. Defining
Δ in this way avoids having special cases in the description
of the strategy, and is close to the Coq implementation.

We have two syntactical categories related to hypotheses:
𝐻𝐶 and𝑈 . Essentially,𝑈 is the class of hypotheses for which
we are able to recursively find hints. At introduction into
the context Δ, we can decompose these into 𝐻𝐶 . The goal

∥ |⇛E1 E2 ∥ ∃®𝑥 . 𝐿 ∗ 𝑅 in 𝐺 is a ‘synthetic’ representation of

|⇛E1 E2 ∃®𝑥 . 𝐿∗𝑅 with the condition FV(𝐿) = ®𝑥 . This condition
ensures that during hint search we only consider the relevant
variables for 𝐿. To uphold this condition, our strategy first

transforms goals like |⇛E E ∃𝑣1 𝑣2. ℓ1 ↦→ 𝑣1 ∗ ℓ2 ↦→ 𝑣1 into

∥ |⇛E ?E′ ∥ ∃𝑣1. ℓ1 ↦→ 𝑣1 ∗ |⇛?E′ E ∃𝑣2 . ℓ2 ↦→ 𝑣1.

5.2 The Proof Search Strategy

If our goal is Γ;Δ ⊢ 𝐺 , we do a case analysis on 𝐺 :

1. 𝐺 = ∀𝑥 . 𝐺 ′: Continue with Γ, 𝑥 ;Δ ⊢ 𝐺 ′.
2. 𝐺 = 𝑈 −∗ 𝐺 ′: Case analysis on𝑈 :

a. 𝑈 = ⌜𝜙⌝: Continue with Γ, 𝜙 ;Δ ⊢ 𝐺 ′.
b. 𝑈 = (𝑈1 ∗𝑈2): Continue with Γ;Δ ⊢ 𝑈1 −∗ 𝑈2 −∗ 𝐺

′.
c. 𝑈 = (∃𝑥 . 𝐿). Continue with Γ;Δ ⊢ ∀𝑥 . (𝐿 −∗ 𝐺 ′).
d. 𝑈 = 𝐻𝐶 . Continue with Γ;Δ, 𝐻𝐶 ⊢ 𝐺

′.
3. 𝐺 = wp 𝑒 {𝑣 . 𝐿}:

a. If 𝑒 is a value𝑤 , continue with Γ;Δ ⊢ |⇛⊤ ⊤𝐿[𝑤/𝑣].
b. Else, find a 𝐾 and 𝑒 ′ with 𝑒 = 𝐾 [𝑒 ′], and quantified

specification ∀®𝑥 . {𝐿1} 𝑒
′ {𝑤. 𝐿2} . Continue with Γ;Δ ⊢

∥ |⇛⊤ ?E ∥ ∃®𝑥 . 𝐿1 ∗
(

∀𝑤. 𝐿2 −∗ |⇛?E ⊤wp 𝐾 [𝑤] {𝑣 . 𝐿}
)

.

4. 𝐺 = |⇛E1 E2 𝐿: We consider the following cases:

817



PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Ike Mulder, Robbert Krebbers, and Herman Geuvers

a. If the modality |⇛E1 E2 is not introducable, continue

with Γ;Δ ⊢ ∥ |⇛E1 ?E3 ∥ ∃ . 𝜒 ∗ |⇛?E3 E2 𝐿. The remain-

ing cases assume that |⇛E1 E2 is introducable.
b. 𝐿 = ⌜𝜙⌝: Prove the pure goal 𝜙 to finish.
c. 𝐿 = wp 𝑒 {𝑣 . 𝐿′}: Continue with Γ;Δ⊢wp 𝑒 {𝑣 . 𝐿′}.

d. Continue with Γ;Δ ⊢ ∥ |⇛E1 ?E3 ∥ ∃ . 𝐿 ∗ |⇛?E3 E2 True

in all other cases.
5. 𝐺 = ∥ |⇛E1 E2 ∥ ∃®𝑥 . 𝐿 ∗𝐺 ′: Case analysis on 𝐿:

a. 𝐿 = ⌜𝜙⌝: Check that |⇛E1 E2 is introducable, and try
to solve 𝜙 [®𝑦/®𝑥]. Continue with Γ;Δ ⊢ 𝐺 ′[®𝑦/®𝑥].

b. 𝐿 = 𝐿1 ∗ 𝐿2: Set ®𝑦1 = FV(𝐿1) and ®𝑦2 = ®𝑥 \ ®𝑦1, continue

with Γ;Δ ⊢ ∥ |⇛E1 ?E3 ∥ ∃®𝑦1 . 𝐿1 ∗ ∥ |⇛?E3 E2 ∥ ∃®𝑦2. 𝐿2 ∗𝐺 .

c. 𝐿 = ∃𝑦. 𝐿′: Continue with Γ;Δ⊢ ∥ |⇛E1 E2 ∥ ∃𝑦, ®𝑥 . 𝐿′ ∗𝐺 .
d. 𝐿 = 𝐴: Find the first 𝐻 ∈ Δ with 𝐿′ and 𝑈 for which
𝐻 ∗ [®𝑦;𝐿′] �

[

|⇛E3 E2
]

®𝑥 ;𝐴 ∗ [𝑈 ]. Then continue with

Γ;Δ \ 𝐻 ⊢ ∥ |⇛E1 E3 ∥ ∃®𝑦. 𝐿′ ∗ (∀®𝑥 . 𝑈 −∗ 𝐺).

In the above, we say that |⇛E1 E2 is introducable, if E2 can be
unified with E1. Note that Item 3b is sym-ex-fupd-exist (ğ3)
and Item 5d is biabd-hint-apply (ğ4). We have omitted steps
in the introduction of magic wands to merge hypotheses
and to detect incompatibilities. For example, if we introduce
locked 𝛾 and already have a locked 𝛾 in our context, we
obtain False by locked-uniqe. We have also omitted the
bookkeeping required to deal with Iris’s later modality (⊲).

5.3 Extending Diaframe with Disjunctions

The Diaframe grammar does not contain disjunctions. This
is intended, as proving disjunctions in linear logics is chal-
lenging. Consider 𝑃 ∗𝑄 ⊢ (𝑃 ∨𝑄) ∗ 𝑃 . It is crucial to prove
the disjunction using𝑄 , since otherwise we are left with the
unprovable goal𝑄 ⊢ 𝑃 . But if we look at just the disjunction,
there is no way to know this in advance.

To offer automation for some goals with disjunctions, we
provide an extension of Diaframe. When introducing a dis-
junction Δ ⊢ (𝑈1 ∨𝑈2) −∗ 𝐺 into the context, continue with
goals Δ ⊢ 𝑈1 −∗ 𝐺 and Δ ⊢ 𝑈2 −∗ 𝐺 by disjunction elimina-

tion.When proving Γ;Δ ⊢ ∥ |⇛E1 E2 ∥ ∃®𝑥 . (⌜𝜙⌝ ∗ 𝐿1 ∨ 𝐿2) ∗𝐺
(and symmetrically), check if we can prove ¬𝜙 , and if so, con-

tinue with the simpler goal Γ;Δ ⊢ ∥ |⇛E1 E2 ∥ ∃®𝑥 . 𝐿2 ∗𝐺 . This
makes the pure goal 𝜙 act as a łguardž on the disjunct.

When a disjunction cannot be handled this way, the proof
search strategy will simply stop. It is then up to the user to
choose a disjunct, and continue the proof (see the proof of
drop in ğ2.2 for an example). To automatically prove more
involved examples, Diaframe allow users to opt-in on the use
of backtracking to choose a disjunct.

6 Implementation and Evaluation

Diaframe is implemented as a library of ca. 15.000 lines of
Coq code, built on top of Iris. We use Coq’s type class mech-
anism [78] extensively to make the implementation para-
metric in (among others) the base proof hints. The recursive
hint search strategy (ğ4.3) and the core proof search strategy

(ğ5.2) are implemented as an Ltac [28] tactic called iStepsS.
This tactic can be used to prove specifications entirely, and
as part of interactive proofs in the Iris Proof Mode [51, 53].
Diaframe comes equipped with 5 ghost-state libraries with
bi-abduction hints, to help verify concurrent programs.

To evaluate Diaframe and its implementation, we have ver-
ified 24 examples with different levels of complexity. These
examples include all the examples used to evaluate Caper [31],
Starling [90] and Voila [91], and 5 additional, closely related
examples. Our examples do not always correspond line-for-
line to the examples from other tools, since the programming
languages are different, but the required concurrency reason-
ing is similar. These examples and their statistics are shown
in Figure 6. This table also includes statistics for manual Iris
proofs (if they are available in Iris’s Coq distribution).
From this benchmark, we conclude that the use of Dia-

frame significantly reduces the proof work when using Iris
to formally verify programs. Diaframe is competitive with
automatic non-foundational tools such as Starling, Voila and
Caper, while being foundationalÐgenerating closed proofs in
the Coq proof assistant. The following caveats apply: (a) Star-
lings constraint-based approach reduces the proof work for
some examples, e.g., Peterson’s algorithm. For most exam-
ples, Diaframe requires less proof work, and is more expres-
sive. (b) Caper outperforms Diaframe with respect to proof
work and number of annotations. However, verification with
Diaframe is modular, meaning it is easier to verify clients.
(c) Voila focuses on TaDA-style logically-atomic specifica-
tions [25], which are not supported by Diaframe. Because of
this focus, Voila requires more proof work than Diaframe,
also for the regular specifications used in this comparison.
We summarize some aggregated data from Figure 6. Dia-

frame can verify 7 of the examples without any help from
the user. Averaged over all examples, we require about 0.4
line of manual proof per line of implementation (321 lines
of proof for 823 lines of implementation). The highest proof
work is in the verification of the Michael-Scott queue [63],
requiring 46 lines of proof for an implementation of 37 lines.
All but two examples can be verified in under two minutes
on our 3960X Threadripper (averaged over 10 runs). The two
exceptions are slow mainly because their invariants contain
an 𝑛-fold disjunction, with 𝑛 relatively high (≥ 10).

Hints and proof search customization. Diaframe has
access to 30 bi-abduction hints, available in our 5 ghost-state
libraries. In Figure 6, user-provided hints and their required
lemmas count as proof search customization. 8 user-provided
bi-abduction hints were necessary to verify examples with
recursive definitions, as Diaframe does not have native sup-
port for such definitions as of yet. Other ways to customize
the proof search are: strengthening the pure solver, and in-
structing Diaframe to merge some hypotheses. Merging hy-
potheses may be necessary to find relevant equalities or
contradictions. The process of designing a user-provided
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name impl annot custom
hints

used
time total

iris manual

total

starling

total

caper

total

voila

total

arc [54] 18 28/4 3 5 0:10 62/7 72/16 70/1
bag stack [18] 29 45/2 34 7(3) 0:17 117/36 170/92 70/0 205/36
barrier 58 100/31 5 14 13:22 200/38 102/0
barrier client 58 98/38 6 6 0:50 175/44 189/0
bounded counter 20 41/7 4 0:11 73/7 50/2 79/9
cas counter 14 31 2 0:08 56/0 95/39 40/0 68/9
cas counter client 16 9 4 0:06 36/0 94/0 267/36
clh lock [58] 30 48 3 7 0:22 94/3 134/15
fork join 14 29 2 0:08 57/0 38/0 51/7
fork join client 13 9 0:04 30/0 70/0 124/20
inc dec 23 44 6 0:31 78/0 54/0 99/12
lclist [16, 87] 28 34/5 13 2(2) 0:27 86/18 197/134
lclist extra 119 53 2 3(2) 1:31 182/2
mcs lock [61] 54 73/7 4 9 1:11 147/11
msc queue [63] 37 56/5 41 13(3) 1:42 168/46
peterson [71] 46 102/28 7 7:51 166/28 94/5
queue 42 58/5 41 12(3) 1:17 170/46 99/0
rwlock duolock [24] 45 50/10 7 0:21 109/10
rwlock lockless faa 27 36/1 8 0:20 74/1 68/1
rwlock ticket bounded 40 68/10 2 13 0:54 124/12 109/14
rwlock ticket unbounded 38 62/5 8 0:21 116/5
spin lock 13 28 3 0:06 59/0 93/30 76/22 39/0 65/7
ticket lock 23 49/6 5 0:23 90/6 168/78 66/11 59/0 90/12
ticket lock client 18 11 1 0:06 39/0 79/0 87/11

total 823 1162/164 154 38(8) 32:30 2518/321 526/239 748/217 1121/4 1135/159

Figure 6. Data on verified examples. Rows correspond to files in the supplementary material [64]. Columns show number of
lines of implementation of the program, annotation (specifications + invariants) and proof search customization. The format
𝑛/𝑚 stands for 𝑛 lines in total, of which𝑚 lines consist of proof work. Proof search customization (i.e., user-provided hints) is
always counted as proof work. In the hints column, notation ℎ(𝑐) stands for ℎ distinct hints used for the proof, 𝑐 of which
were custom/user-provided. The time column displays the average verification time in minutes:seconds. The column total also
includes all remaining Coq boilerplate, like Import statements.

hint is generally as follows. First, run Diaframe until it gets
stuck. Inspect the available hypotheses and goal, looking for
a hypothesis that indicates a way to prove the left-most atom
in the goal. Create and prove this new hint, and repeat.

Performance for failing verifications. One rarely gets
the verification of these examples right in one go. It is there-
fore important to consider the performance of Diaframe
when verification fails. In our artifact [64] one can find sev-
eral examples that intentionally fail, obtained by changing
the code, postcondition or omitting induction hypotheses.
In all these cases, failing times were lower than the final
verification time in Figure 6.

Differences between the examples across tools. We ver-
ify bounded counter for a parametric bound, whereas Ca-
per and Voila fix the bound to 3. Starling verifies a static ver-
sion of Peterson’s algorithm and a bounded reader-writers
lock, whereas we verify a heap-allocated version.

Manual Iris proofs. When comparing with manual Iris
proofs, we see that Diaframe takes care of most, if not all,
of the proof work. Relatively easy examples like spin lock

and cas counter are verified without manual proof work.
For harder examples like ticket lock and bag stack, Dia-
frame saves more than 50 lines of proof work.

Starling. Starling [90] functions as a proof outline checker :
the user has to supply the intermediate program states after
each atomic step, and Starling will then verify whether this
transition is valid. Starling is a standalone tool written in
F#, and can use different backends as trusted oraclesÐthe
Z3 SMT solver [27], or GRASShopper for heap-based rea-
soning [73]. Its logic is based on the Views framework [29],
which enables Starling to express various concurrent rea-
soning patterns into one core proof rule. This core proof
rule produces a finite set of verification conditions for each
atomic step, which can then be sent to the trusted oracle. This
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efficient mapping of atomic steps to verification conditions,
together with the ease of defining custom concurrent rea-
soning patterns, gives Starlings proof automation its power.
The downside of the relatively simple logic of Starling is
reduced expressivityÐit cannot prove functional correctness
of e.g., the bag stack. There is also no support for verifying
method calls, preventing verification of clients.

Comparing our statistics to those of Starling, one can see
that we usually require fewer lines of proof work. This is
not surprising, as Starling is a proof outline checker, and
thus requires a pre- and postcondition for every atomic op-
eration. A notable exception to the smaller proof obligation
is Peterson’s algorithm. Stating and proving the invariant
for this algorithm in Iris turned out to be quite difficult, and
it seems Starling’s constraint-based approach is a better fit
here. In Figure 6, we counted postconditions of atomic oper-
ation that are not the last operation as proof work, as well
as non-comment lines in program-specific external files.

Caper. Caper [31] is written in Haskell, and uses the Z3
SMT solver [27] as a trusted oracle. The target programs
are written in a custom language, and the proof system is
based on the CAP logic [30]. This logic contains shared re-
gions (similar to Iris’s invariants) and guard algebras (similar
to Iris’s ghost state/logical resources) to accommodate rea-
soning about fine-grained concurrency. The cornerstones of
Caper’s proof automation are backtracking and abduction.
These allow Caper to infer that regions should be opened
when verifying the execution of a statement in a program. A
failure to satisfy some precondition is used as an indication
to reattempt the proof with opened regions.

When comparing Diaframe to Caper, we can see that Ca-
per outperforms Diaframe in terms of proof work and an-
notation overhead. For one, their notations can give imple-
mentations and specifications of functions in one go. Caper’s
proof automation is also simply more powerfulÐnotably, it
will ‘blindly’ open regions in the hope they help proving the
goal. Although this makes Caper’s automation more pow-
erful, it also makes it slow on failing examples as pointed
out by Wolf et al. [91]. In these cases, Diaframe’s automation
will simply stop at the point where it cannot make progress,
while Caper will backtrack through all possible options. In
the verification of clients, we outperform Caper because Dia-
frame’s verification is compositionalÐunlike Caper, we do
not need to restate and re-verify a library to verify a client.
For Caper, the lines of proof work in Figure 6 consist

of no-ops such as assert (cnt = 1 ? true : true), that
are used to force case-splits in Caper’s proof engine.

Voila. Voila [91] is a proof outline checker for the TaDA
logic [25]. Voila takes a user-provided proof outline, turns it
into a proof candidate, then verifies this with Viper [65]. Like
Caper, Voila uses regions and guard algebras for fine-grained
concurrent reasoning. Some program statements need addi-
tional annotations containing the relevant reasoning steps,

like opening regions. Voila’s automation is a combination of
applying syntax-driven rules whenever possible, asking the
user to provide key rules of the proof, and then using a set
of heuristics to fill in gaps for nearly applicable rules.
In the examples in our benchmark, Diaframe usually re-

quires fewer total lines, and fewer lines of user guidance than
Voila. Again, this is not surprising, since like Starling, Voila
is a proof outline checker. Voila also does not support all the
guard algebras that Caper does. This prevents verification of
e.g., the queue. However, Voila is capable of (and focused at)
verifying TaDA-style logically-atomic specifications. While
Iris supports these, Diaframe does not. For Voila, the lines of
proof work in Figure 6 consist of explicit calls to open/close
regions, and explicit uses of atomic specifications.

7 Related Work

There is a lot of work on non-automated verification [47, 50,
59] in foundational tools [3, 17, 39, 45, 67, 77]. We focus on
related work in automated verification. Starling [90], Caper
[31] and Voila [91] have been covered in ğ6.

Steel. Steel [36, 83] is a language for developing and veri-
fying concurrent programs in a concurrent separation logic
descendant of Iris [45], written in F* [82]. Similar to Diaframe,
Steel designed a format to automate the application of certain
rules. Their approach uses a notion of Hoare quintuples, and
relies on a combination of SMT solving and AC-matching.
Diaframe uses weakest preconditions, and avoids reasoning
up to commutativity: the order in preconditions and invari-
ants is relevant. Steel excels in automatically proving pure
side conditions, leveraging F*’s native use of the Z3 SMT
solver [27]. As listed in ğ8, our support for pure side condi-
tions is rather weak, and would benefit from stronger pure
automation. It is hard to compare Steel’s automation for fine-
grained concurrency to ours, since Fromherz et al. [36] only
covered a spinlock and a parallel increment.

Verification in a weak-memory setting. Summers and
Müller [79] presented a prototype tool which can automat-
ically verify fine-grained concurrent programs in a weak
memory model. It works by encoding parts of separation
logics for weak memory [33, 34, 88] into Viper [65], similar
to Voila’s approach [91]. It would be interesting to extend
Diaframe with support for weak memory using one of the
Iris-based logics for weak memory [26, 49, 62].

Bedrock. Bedrock [21, 22] is a mostly-automatic founda-
tional tool for verifying sequential programs in an assembly-
like language. Its separation-logic based automation employs
techniques that are somewhat similar to those of Diaframe.
It tries to syntactically match hypotheses and goals, ‘cross-
ing off’ hypotheses that appear directly in the goal. More
involved reasoning steps, like updating ghost-state, require
explicit annotations, and we expect that this would not give
the amount of automation that Diaframe provides.
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RefinedC. RefinedC [76] is a recent Iris-based tool for
automatic and foundational verification of C programs. One
of the main ingredients of RefinedC’s automation is the ‘sep-
aration logic programming language’ Lithium, which, like
Diaframe, is based on ideas from linear logic programming.
Lithium and Diaframe employ the same rules for introducing
variables and hypotheses, prove separating conjunctions in a
deterministic left-to-right fashion, and do not backtrack once
a hint has been used. Lithium’s grammar is more restricted
than Diaframe’sÐit does not contain modalities, so it cannot
handle complicated ghost state or Iris’s invariants. It is also
targeted specifically at proving RefinedC’s typing judgments,
while we target general Iris weakest preconditions. By en-
capsulating some concurrency reasoning in typing rules,
RefinedC can support limited forms of fine-grained concur-
rency, like a spin-lock and a one-time barrier. RefinedC has
stronger automation and simplification procedures for pure
goals, focused at handling complicated sequential programs,
which might be valuable for Diaframe in the future too.

Other non-foundational verification tools. Other au-
tomated verification tools are Verifast [10, 44], SmallfootRG
[8, 16], and VerCors [69]. The automation of Verifast is very
fast and requires little help for sequential code, but many
annotations for fine-grained concurrent code compared to
other tools. SmallfootRG is targeted at memory safety, thus
cannot prove full functional correctness like Diaframe. Like
Diaframe, Verifast and Smallfoot use automation by symbolic
execution. An important difference is the use of a symbolic
heap, which facilitates permission and value queries. We do
not have this option in Iris, so instead of operating on the
entire heap at once, we operate on a single hypothesis at a
time. VerCors uses process-algebras in addition to separa-
tion logic to reason about fine-grained concurrent programs.
This approach does lead to reduced expressivity, but has
been shown to scale to interesting examples [70].

Logic programming languages for linear and sepa-

ration logic. There is much prior work on linear logic pro-
gramming [5, 19, 40, 43], from which our work has drawn
inspiration. Like Diaframe, these works use a goal-directed
proof-search procedure, and interpret connectives as proof-
search instructions. They are usually restricted to the (linear)
hereditary Harrop fragment of the logic, but enjoy complete-
ness results on this fragment. Diaframe poses less restrictions
on goals, but is necessarily incomplete. Inspired by focusing
[1, 57] Diaframe first performs invertible operations.

Separation logic solvers and bi-abduction. The litera-
ture abounds with solvers for (first-order) separation logic
[23, 55, 56, 72, 75, 84]. These usually focus on a specific set
of atoms (e.g., the symbolic heap fragment [7]), or intricate
recursive structures while enjoying completeness results.
Diaframe is parametric in the set of atoms, but not able
to handle recursive definitions without user-defined hints.

Calcagno et al. [15] and Brotherston et al. [14] also use bi-
abduction, but with a dual goal: shape-analysis, i.e., inferring
specifications for programs. They present recursive rules
and a decision procedure to solve the bi-abduction problem,
but in a more confined separation logic.

8 Limitations and Future Work

We have introduced DiaframeÐthe first automated and foun-
dational tool for verification of fine-grained concurrent pro-
grams. As the benchmarks in Figure 6 show, Diaframe is com-
petitive with automatic non-foundational tools, but there are
still plenty of directions for improvements.

A limitation of Diaframe is that it cannot handle goals that
do not fit the grammar. In particular, there is no support for
magic wands in invariants. Although these can be avoided in
most cases, some examples remain out of reachÐfor example,
the barrier verified by Jung et al. [45].

Some manual proof work is caused by the lack of support
for recursive definitions, for which we would like to generate
proof hints automatically. In this paper, we have focused on
automating the separation logic part of the verification, but
for larger examples we want to improve the automation and
simplification procedures for pure conditions.
When our automation gets stuck on a goal, it can some-

times be unclear why this goal remains, and what happened
before. This occurs most often in programs with multiple
branches and/or invariants with disjunctions. We leave im-
proving the user interaction in these cases for future work.
Since we use syntactic unification to drive automation,

support for (general) indexing in an array is poor. Verification
of data structures such as ring buffers seem like a challenge.
It would be useful to develop appropriate hints for arrays.
The verification time of Diaframe is relatively slow. Al-

though 18 out of 24 examples verify in under a minute, the
barrier example is our slowest, taking 14 minutes. We think
this can still be improved, and wish to investigate this.
Diaframe’s proof search strategy could, in principle, be

used whenever goals can be rewritten into Diaframe’s entail-
ment format. This can be done for logically-atomic specifica-
tions, and can also be done for ReLoC’s refinement judgment
[37, 38]. However, both these types of goals present addi-
tional challenges for automatic verificationÐone of which
is that there are multiple seemingly valid (and syntactically
similar) ways to proceed with a proof. In future work, we
wish to investigate whether this can be addressed.
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