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Chapter 1

Introduction

Software is everywhere in our modern world. It runs in our phones, websites, and

probably in some of your household appliances. Ideally, this software should behave

precisely like the programmer intended.
1
In reality, software behavior often di�ers from

programmer intention, causing problems ranging from minor inconveniences (e.g., apps

closing unexpectedly), to security errors (e.g., Heartbleed (Mitre, 2014), a subtle mistake

that caused malicious inputs to a service to leak sensitive data), to major catastrophes

(e.g., a power grid failure a�ecting 50 million people (CBC, 2010)).

Software behavior becomes especially unpredictable in the face of concurrency: when

multiple cores or threads execute programs simultaneously, while interacting with shared

resources. Since almost all modern devices come with multi-core processors, and con-

current algorithms have the potential to outperform their sequential/single-threaded

counterparts, concurrency is everywhere. Concurrent algorithms are notoriously hard to

get right: one needs to ensure that all possible program interleavings (and their interac-

tions with shared resources) result in intended behavior. Indeed, the power grid failure

mentioned before was caused by a concurrency error known as a race condition.

Goal of this thesis. We aim to develop methods and tools which:

1. can establish the correctness of concurrent programs (i.e., that all possible behavior

of the program is ‘intended’);

2. can do so in a modular and compositional fashion (i.e., after verifying individual

program parts, we should be able to verify any correct composition of these parts);

3. give trustworthy results about such programs (i.e., one should not need to trust the

tool: if a program is reported to be ‘correct’, this must be independently veri�able);

4. requireminimal user e�ort (i.e., besides the program and a description of its intended

behavior, the tool should require minimal additional input).

The veri�cation of concurrent programs is an active area of research, and methods have

been developed that satisfy three of these four criteria—we shall discuss these in more

detail in §1.2. This thesis extends Iris (Jung et al., 2018b; Krebbers et al., 2017a), existing

research that satis�es criteria #1 to #3, with strong automation, to satisfy criteria #4.

1
Ideally software should behave precisely like the user expects. The possible (and probable) mismatch

between user expectation and programmer intention is out of scope for this thesis.

1
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Concurrent programs are often built using libraries that provide high-level building

blocks for concurrency, such as locks or e�cient concurrent data structures. The correct-

ness of these concurrent libraries is our prime veri�cation target—client programs rely

on libraries precisely because concurrent programs are hard to get right. Compositional

veri�cation is especially relevant in this setting: veri�ed libraries pave the way for veri-

fying client programs, and allow client program veri�cations to remain agnostic of the

implementation intricacies of the library.

Fine-grained vs coarse-grained concurrency. Concurrent programs can roughly

be divided into coarse- and �ne-grained concurrent programs. Coarse-grained concurrent

programs rely on so-called ‘locks’ to guard access to shared resources. This approach

allows programs to temporarily get exclusive access to these resources—which prevents

other threads from interfering. Exclusivity makes verifying coarse-grained concurrent

programs signi�cantly easier, since parts of the program become e�ectively sequential.

However, this usually comes at the cost of performance. Threads will sometimes need to

wait for other threads to �nish, while it may be safe for them to run concurrently.

On the other hand, �ne-grained concurrent programs rely on low-level hardware

primitives for synchronization. For example, they might use a primitive Fetch And Add

(FAA) instruction, which reads and increments a given integer reference in a single

program step. Fine-grained concurrent programs are generally more performant, but

harder to verify than their coarse-grained (i.e., lock-based) counterparts.

We focus on the veri�cation of �ne-grained concurrent programs in this thesis.

Implementations of locks usually rely on �ne-grained concurrency. Another example

that uses �ne-grained concurrency is given in Figure 1.1: an Atomic Reference Counter

(ARC) adopted from Rust (Rust Language, 2021). ARCs are used to safely share ownership

of (and read-access to) a resource among multiple threads. Concurrent graph structures

typically use ARCs as a building block. Figure 1.1 shows a simpler client program client.

The methods developed in this thesis allow us to automatically prove that the ARC

library from Figure 1.1 behaves as intended, i.e., behaves according to a provided descrip-

tion of its indended behavior. Additionally, we can use this to verify clients of the ARC.

For example, we can prove that the program client () never crashes: the asserts will

never fail, and both Use-After-Free memory errors (reading from a freed reference), and

Double-Free memory errors (freeing a freed reference) can never happen.

Correctness using separation logic. In this thesis, we use a program logic to describe

program behavior. This allows us to express intended program behavior in the language

of logic, i.e., with logical speci�cations. Furthermore, program logics provide proof rules

that enable us to formally prove that programs satisfy these speci�cations. Program

logics make it possible to reason about programs in a more convenient and abstract

manner—without mentioning the low-level details of the underlying semantics of the

language, such as the memory or possible interleavings of other threads.

In particular, we will use concurrent separation logic (O’Hearn, 2004, 2007; Brookes,

2007). Concurrent separation logic is an extension of separation logic (O’Hearn et al., 2001;

Reynolds, 2002), which is itself an extension of Hoare logic (Hoare, 1969; Floyd, 1967).

Hoare logic is concerned with establishing functional correctness of programs, i.e., that for

each valid input state, running the program results in a valid output state. Separation logic

streamlines this process for sequential programs that manipulate pointers, and enables
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let mk_arc v =

ref {cnt: 1, val: v}

let clone a =

FAA (a.cnt) 1; ()

let read a =

! (a.val)

let drop a =

let c = FAA (a.cnt) (-1) in

if c == 1 then free a else ()

let thread a =

let v = read a in

drop a;

assert (v == 42)

let client _ =

let a = mk_arc 42 in

clone a;

(thread a || thread a)

ARCs are used to safely share ownership of (and read-access to) a resource among multiple threads.

This ARC achieves that by keeping a (thread-safe) tally of the number of active readers. The intended

behavior of this ARC is as follows: a) mk arc creates an ARC, representing shared ownership of the

provided value, b) clone increases the reference count, allowing the ARC to be passed to one forked-o�

thread, c) read reads the provided value from an ARC, d) drop decreases the reference count, possibly

freeing the ARC. Note that FAA fetches and increases the integer reference by the given amount, and

returns the previous value of the reference.

With these properties, we can show that running client ()will never crash. In particular, the asserts

will never fail, and two important classes of memory errors can never appear: Use-After-Free errors

(reading from a freed reference), and Double-Free errors (freeing a freed reference). Note that the call

to clone is crucial here: if it is omitted, client () will cause a memory error.

Figure 1.1: Implementation of an ARC library and client in an ML like language

compositional veri�cation in this setting. It does so by strictly enforcing local reasoning:

speci�cations describe precisely the part of the heap they operate on, guaranteeing that

other parts of the heap stay untouched. Separation logic also turned out to be well-suited

for reasoning about concurrently running programs, as long as each program operates

on disjoint parts of the heap—building on design principles already proposed by Dijkstra

(1968). Concurrent separation logic addresses the case we are interested in for this thesis:

concurrently running programs operating on shared state. We will get back to it in §1.1.2.

There are many di�erent kinds of ‘correctness’ to consider for concurrent programs.

We shall concern ourselves with two of these: functional correctness, and linearizability.

Functional correctness characterizes the input-output behavior of programs: assuming

that certain conditions hold on the input state, we try to prove that certain conditions must

be true for the output state. Linearizability (Herlihy and Wing, 1990) is a more intricate

notion of correctness for concurrent data structures, equivalent to behaving precisely as

a sequential data structure guarded by a lock (Filipović et al., 2010). Other correctness

properties (e.g., termination, memory leak freedom, dead-lock freedom, con�dentiality,

fairness of lock acquisitions) are left for future work (see also Chapter 6).

State of the art. Concurrent separation logic is the basis of various recent tools that

can be used to verify functional correctness or linearizability of �ne-grained concurrent

programs. By building on separation logic, these tools satisfy our criteria #1 and #2:

being able to prove correctness of concurrent programs in a compositional fashion. For

criteria #3 and #4, we can distinguish two approaches in existing tools. On the one hand,

foundational (Appel, 2001) tools (often built in proof assistants) focus on expressivity

and trustworthiness. Foundational tools usually require the user to spell out many of the

veri�cation details. On the other hand, automated tools focus on minimizing user e�ort
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for veri�cation. These are usually standalone tools with a custom strategy for automating

(parts of) the veri�cation, and often rely on calls to external SMT solvers.

Foundational tools take it upon themselves to ensure successful veri�cations rely only

on the axioms of the underlying logic and the operational semantics of the programming

language. This is often achieved by embedding the tool in a proof assistant—a computer

program that can verify elementary steps of a proof, whichwewill cover in §1.3. By design,

foundational tools do not accept imprecisions or jumps in reasoning: all reasoning steps

must be spelled out and explained. Providing these steps automatically is challenging,

since foundational tools typically have a rich higher-order logic—incompatible with the

�rst-order logics of automated tools, and incompatible with their automation strategies.

Our contributions. In this thesis, we design, verify and implement logical systems

based on concurrent separation logic that can (semi-)automatically verify �ne-grained

concurrent programs. The resulting tool Diaframe is foundational, allows for composi-

tional veri�cation, and provides a high degree of automation. We obtain these �rst two

properties by extending Iris, a framework for concurrent separation logic in the proof

assistant Coq. The main challenge in this thesis is therefore proof automation.

Iris’s logic is an expressive higher-order concurrent separation logic. This poses a

challenge for automation—in fact, propositional separation logic is already undecidable

(Brotherston and Kanovich, 2014), so any proof automation for Iris will inherently be

incomplete. To make matters worse, Iris’s more advanced features like higher-order

quanti�cation, step-indexing (Appel et al., 2007) and impredicative invariants (Svendsen

and Birkedal, 2014) form an integral part of program veri�cations. These features are

fundamentally incompatible with the logics (and therefore the automation) of existing

automated tools. We need new proof search strategies for automation.

Separation logic is a form of linear logic, for which signi�cant research e�ort has

been invested in automatically �nding proofs. In linear logic programming (Hodas and

Miller, 1991; Cervesato et al., 2000), the shape of a proof obligation is interpreted as an

instruction for proof search—meaning that a certain logical rule is always applied when

the goal has a particular shape. Such syntax-directed proof search was shown to give

e�ective automation in foundational sequential separation logic veri�cation projects

like Bedrock (Chlipala, 2011) and Re�nedC (Sammler et al., 2021). Unfortunately, this

approach is not directly applicable to concurrency in Iris. In particular, resources that are

shared are not readily available in a proof—these can only be obtained with Iris’s special

proof rules for concurrency. Diaframe formulates these rules in a more syntax-directed

fashion, giving rise to an e�cient, predictable and goal-directed proof search strategy.

Such a strategy needs to overcome the following challenge: how can we know which

hypotheses are relevant for the current proof obligation? The naive approach is to

exhaustively try each hypothesis and continue proof search, backtracking for failed proof

attempts. However, this approach is costly and makes failing veri�cations very hard to

debug. Diaframe overcomes this challenge by taking inspiration from connection calculi

(Wallen, 1990; Otten and Kreitz, 1995; Waaler, 2001), and subformula linking (Chaudhuri,

2021; Donato et al., 2022). Diaframe deeply inspects formulas of hypotheses to determine

their relevance—hypotheses found relevant are used and never backtracked on.

We evaluated Diaframe by verifying various examples from existing automated tools

for �ne-grained concurrency. We found that Diaframe’s proof burden is competitive with

these tools, while adding foundational guarantees.
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1.1 Foundations of Concurrent Program Veri�cation

Concurrent program veri�cation has been actively studied for the the past 50 years. We

will recap some of that history in §1.1.1, to give the reader an idea of how the methods

developed in this thesis relate to earlier methods for concurrent program veri�cation.

We continue with a brief primer on (concurrent) separation logic in §1.1.2, as it lies at

the basis of many modern methods for concurrent program veri�cation, including ours.

1.1.1 History of Concurrent Program Veri�cation

The seminal work from Owicki (1975) and Owicki and Gries (1976) coined several key

techniques for concurrent program veri�cation. They introduced one of the �rst formal

systems for verifying concurrent programs: an extension of Hoare logic that used a

check on interference-freedom for verifying concurrent programs with shared variables.

Another important contribution is that of proof outlines: veri�cations were carried out by

annotating every atomic operation in a thread with pre- and postconditions. These proof

outlines captured program veri�cations in a readable and relatively concise format.

Owicki and Gries (1976)’s interference-freedom check operates not just on the pro-

grams running in parallel, but also on their proof derivations. Successfully veri�ed

individual threads could only be checked for interference after veri�cation, making

this approach not compositional. Jones (1981, 1983) addressed this by introducing rely-

guarantee style reasoning. With rely- and guarantee-conditions, one can explicitly and

formally constrain the amount of interference the program expects and causes—before

starting the veri�cation. Veri�cations of threads with matching rely-guarantee conditions

can be composed, i.e., such veri�ed threads can safely be run in parallel.

These prior e�orts were mostly focused on programs that manipulate simple data

such as booleans or integers—not on data structures. This changed when Herlihy and

Wing (1990) coined the concept of linearizability, a correctness condition for concurrent

data structures. A concurrent data structure is linearizable if the e�ects of operations on

the data structure appear to take place instantaneously for clients. Linearizability was

not expressed in terms of a Hoare-like logic, and this would remain the case until the

work of da Rocha Pinto et al. (2014) and Jacobs and Piessens (2011). Today, linearizability

is still widely regarded as the gold standard of correctness for concurrent data structures.

The history of concurrent program veri�cation is richer than we can capture in a

subsection, so we have focused on work that is pertinent to this thesis. Other in�uential

work is e.g., Lamport (2002) and Pnueli (1977)’s work on temporal logic for concurrent

program veri�cation, and the diverse work on process calculi like CSP (Hoare, 1978) and

CCS (Milner, 1980). For more details on the history of concurrent program veri�cation,

also see e.g., Brookes and O’Hearn (2016, §1.1) and de Roever et al. (2001, §1.7).

1.1.2 Concurrent Separation Logic

Until the early 2000s, concurrent program veri�cation was mostly focused on programs

with shared (global) variables. Realistic programs that manipulated pointers posed a major

problem for both sequential and concurrent program veri�cation. Informal veri�cations

of such programs often implicitly assume that the pointers point to appropriately disjoint
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regions in memory. It was a major challenge to formalize this reasoning in a way that

avoids explicitly stating all the required disjointness conditions.

This changed when O’Hearn et al. (2001) and Reynolds (2002) introduced separation

logic, which made modular program veri�cation possible without pointer aliasing prob-

lems. Separation logic is an extension of Hoare logic (Hoare, 1969; Floyd, 1967), i.e., a

program logic for proving speci�cations for programs. The main change w.r.t. Hoare logic

is in the assertion language of the speci�cations. Separation logic assertions describe

parts of the heap, and can be combined with a special operator that implicitly forces these

parts to be disjoint. The logic of these assertions is usually also called separation logic. We

will brie�y introduce the assertion language before continuing with the program logic.

Assertion language. There are two key ingredients to separation logic’s assertion

language. Firstly, there is the points-to predicate ℓ ↦→ 𝑣 , which describes heaps for which

location ℓ points to value 𝑣 . Secondly, there is the eponymous separating conjunction ∗,
where 𝑃 ∗𝑄 means that the heap can be subdivided into two disjoint parts, with 𝑃 holding

in the �rst part, and 𝑄 in the second. The disjointness requirement is the crucial element

that makes separation logic so useful. For example, we get that ℓ1 ↦→ 𝑣1∗ℓ2 ↦→ 𝑣2 ` ℓ1 ≠ ℓ2:

if both ℓ1 and ℓ2 point to some value in disjoint parts of a heap, ℓ1 and ℓ2 must be distinct

pointers. The separating conjunction thus prevents the need for explicit conditions

to prevent pointer aliasing. One such condition might be acceptable for two distinct

pointers, but note that for 𝑛 distinct pointers, one requires non-aliasing conditions for

every pair—totalling
𝑛 (𝑛−1)

2 conditions.

A curious property of separation logic is its substructurality: in general, assertions can

only be used once. A striking example of this is ℓ ↦→ 𝑣 0 ℓ ↦→ 𝑣∗ℓ ↦→ 𝑣 : unlike with regular

conjunction ∧, we cannot duplicate assertions with ∗. This makes it common to interpret

separation logic propositions as resources. Validity of separation logic proposition 𝑃 can

thus be seen as having ownership of the corresponding resources.

Program logic. To verify programs in separation logic, one uses the primitive rules

of the program logic to prove Hoare triples (Hoare, 1969) of the form {𝑃} 𝑒 {𝑄} . This
states that whenever the heap satis�es predicate 𝑃 , executing program 𝑒 is safe (i.e., does

not get stuck), and if 𝑒 terminates, the resulting heap satis�es predicate 𝑄 .2 One such

triple is {ℓ ↦→ 𝑛} FAA ℓ 𝑚 {ℓ ↦→ (𝑛 +𝑚) ∗ ret = 𝑛} , which states that the fetch-and-add

instruction FAA fetches the value 𝑛, adds𝑚 to it, stores the result in ℓ , and returns 𝑛.

Note that this triple on FAA does not state anything about what happens to remaining

parts of the heap—for example, if you call FAA ℓ1 1 on a heap satisfying ℓ1 ↦→ 7 ∗ ℓ2 ↦→ 2,
one would hope that ℓ2 remains untouched. This is indeed the case, and follows auto-

matically from separation logic’s frame rule frame, shown in Figure 1.2.
3
The frame rule

states that Hoare triples only operate on the part of the heap described by the precondi-

tion: any remaining part of the heap that satis�es 𝑅 will not be touched, and so 𝑅 keeps

holding on that part of the heap. Modular and compositional veri�cation in separation

logic is possible largely because of this frame rule. The frame rule ensures that we can

2
This is partial correctness: {𝑃 } 𝑒 {𝑄 } does not claim that 𝑒 terminates. Total correctness has also been

studied extensively, but guaranteeing termination in a concurrent setting is hard and outside the scope of this

thesis.

3
Note that the frame rule still applies when we choose 𝑅 = ℓ ↦→ 𝑛 for our Hoare triple for FAA: since no

heap satis�es the precondition ℓ ↦→ 𝑛 ∗ ℓ ↦→ 𝑛, the triple holds vacuously.
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frame

{𝑃} 𝑒 {𝑄}
{𝑃 ∗ 𝑅} 𝑒 {𝑄 ∗ 𝑅}

par

{𝑃1} 𝑒 {𝑄1} {𝑃2} 𝑒 {𝑄2}
{𝑃1 ∗ 𝑃2} (𝑒1 | | 𝑒2) {𝑄1 ∗𝑄2}

Figure 1.2: Selected proof rules of (concurrent) separation logic

verify sub-programs in isolation, i.e., with pre- and postconditions that only mention the

relevant parts of the state, and reuse these results to verify bigger programs.

Concurrent Separation Logic. This idea of disjointness also turns out to be very

useful in a concurrent setting, as shown by O’Hearn (2004, 2007) and Brookes (2007) with

the introduction of concurrent separation logic (CSL). They realized that as long as two

programs operate on disjoint resources, it is safe to run the two programs in parallel—and

that this can be captured in separation logic with the par rule, shown in Figure 1.2.

Although this insight already simpli�es reasoning for some class of concurrent pro-

grams, it is not su�cient to verify parallel programs that operate on shared state. To

verify programs such as (FAA ℓ 1 | | FAA ℓ 1), or the client () example from Figure 1.1, one

needs additional machinery. The original work by O’Hearn (2007) therefore includes a

rule for verifying programs that use a critical region to guard access to shared state. Later

work relaxed this to enable veri�cation of less structured access to shared state, e.g., for

programs that use storable locks (Gotsman et al., 2007; Hobor et al., 2008), or programs

that use operations marked as atomic (Parkinson et al., 2007).

Another important realization was that one could come up with more resources

that satis�ed the laws of separation logic, and that these could be useful for program

veri�cation. For example, Boyland (2003) suggested a notion of fractional permissions,

which Bornat et al. (2005) then brought to separation logic. The idea here is to annotate

points-to connectives with a fraction 0 < 𝑞 ≤ 1, with the property that

ℓ
𝑞1↦−−→ 𝑣 ∗ ℓ

𝑞2↦−−→ 𝑣 a` ℓ
𝑞1+𝑞2↦−−−−−→ 𝑣 . (1.1)

Here, ℓ
𝑞
↦→ 𝑣 should be interpreted as having a 𝑞 amount of ownership of location ℓ , i.e.,

full ownership/write-access if 𝑞 = 1, and partial ownership/read-access for 0 < 𝑞 < 1.
These fractional permissions allow one to give various threads read-access to a shared

location, and recover write-access after the threads have �nished.

Note that although the left-hand side of Equation (1.1) has a separating conjunction,

the two conjuncts actually refer to resources that are not entirely separate: they describe

the same location ℓ . This idea of ‘�ctional separation’ has been very in�uential. Dinsdale-

Young et al. (2010) �rst brought this idea to CSL in their logic for Concurrent Abstract

Predicates (or CAP), a descendant of RGSep (Vafeiadis and Parkinson, 2007) that combines

rely-guarantee style reasoning with concurrent separation logic. These predicates can

�ctionally separate partial knowledge or ownership of �ne-grained concurrent data

structures, and thereby prove intuitive speci�cations for them. For example, we can

de�ne an is arc predicate to describe the ARC from Figure 1.1, and prove the speci�cations

shown in Figure 1.3. CAP has subsequently been extended to support more �exible usage

patterns (Svendsen et al., 2013), and impredicativity (Svendsen and Birkedal, 2014).
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let mk_arc v =

ref {cnt: 1, val: v}

let clone a =

FAA (a.cnt) 1; ()

let read a =

! (a.val)

let drop a =

let c = FAA (a.cnt) (-1) in

if c == 1 then free a else ()

{True} mk arc v {is arc(ret, 𝑣)}

{is arc(a, 𝑣)} clone a {is arc(a, 𝑣) ∗ is arc(a, 𝑣)}

{is arc(a, 𝑣)} read a {is arc(a, 𝑣) ∗ ret = 𝑣}

{is arc(a, 𝑣)} drop a {True}

Figure 1.3: Speci�cation for the ARC library

Iris. The mid 2010s saw the introduction of a wide variety of concurrent separation

logics: extensions of and improvements on earlier versions, often tailored to speci�c

examples. Combining features from di�erent logics was no easy feat, often requiring

tweaks to the model of the logic, and thus revisiting soundness arguments. At the same

time, more complicated models also meant that mistakes were harder to spot. Researchers

were looking for a unifying framework for experimenting with CSL, mechanized in a

proof assistant.

An in�uential attempt at overcoming this challenge is the Iris framework for higher-

order concurrent separation logic (Jung et al., 2018b). Iris comes with various state-of-

the-art features for CSL, such as impredicative invariants and user-de�ned ghost state.

Indeed, one of Iris’s key insights is that the combination of invariants and user-de�ned

ghost state is ‘all you need’ for concurrent reasoning patterns (Jung et al., 2015). At the

same time, Iris is very extensible and allows for e�ective formal reasoning inside the

logic with the dedicated Iris Proof Mode (Krebbers et al., 2017a, 2018)—and all of this is

foundational, being embedded in the proof assistant Coq. Since its inception, Iris has been

used to formally verify e.g., increasingly complicated �ne-grained concurrent programs

(Jung et al., 2020), concurrent programs under relaxed memory consistency (Kaiser et al.,

2017), a representative part of Rust’s type system (Jung et al., 2018a), and a performant

concurrent queue by engineers at Meta (Carbonneaux et al., 2022).

Iris thus brings many boons, both for researchers aiming to use or extend CSL, as

well as for practitioners trying to verify concurrent programs. In particular, it satis�es

our criteria #1 to #3: #1) it can prove the correctness of concurrent programs; #2) it can do

so in a compositional fashion, by using CSL; #3) it can do so in a trustworthy way, since

it is embedded in a proof assistant. However, despite the relative ease of reasoning that

the Iris Proof Mode (Krebbers et al., 2017a, 2018) brings, concurrent program veri�cation

in Iris remains a labor-intensive endeavor. In particular, Carbonneaux et al. (2022) note:

We were also surprised that the most important lemmas took only a couple

lines to prove while using the invariants and writing the code proofs required

hundreds of rather straightforward lines. While Iris’ proof mode made using

CSL [Concurrent Separation Logic] easy, this observation seems to indicate

that there remains untapped potential to increase the reasoning density.

This thesis attempts to do precisely that: lessen Iris’s veri�cation overhead by coming up

with methods to automate proofs in Iris, thereby satisfying criteria #4.
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1.2 State of the Art

Concurrent separation logic (or some extension of it) lies at the heart of many modern

veri�cation tools for concurrent programs. To see how our approach relates to the state

of the art, we discuss modern automated and other noteworthy tools in § 1.2.1 and 1.2.2,

respectively.

1.2.1 Automated Concurrent Program Veri�cation Tools

We shall discuss four state-of-the-art tools for automated concurrent program veri�cation:

Caper, Voila, Starling and Plankton. All these tools use a form of concurrent separation

logic, and aim to prove functional correctness or linearizability of concurrent programs.

Caper (Dinsdale-Young et al., 2017). Caper is an automated veri�cation tool written

in Haskell. Caper’s proof system is based on the CAP (Concurrent Abstract Predicates)

logic (Dinsdale-Young et al., 2010) for �ctional separation. This logic has a notion of

‘shared regions’ that can encode protocols on shared state, allowing Caper to prove

functional correctness of �ne-grained concurrent programs. Caper achieves an impressive

degree of automation: after providing the program, its speci�cation, and the shared

regions, veri�cation is fully automatic for most examples.

Caper relies on the SMT solver Z3 (de Moura and Bjørner, 2008) to handle some

(sequential) separation logic reasoning. Caper’s automation for �ne-grained concurrency

builds on three ideas: symbolic execution (as pioneered for separation logic by Smallfoot

(Berdine et al., 2006)), backtracking, and abduction. In short, Caper checks that a program

satis�es a speci�cation by symbolically executing the program. If, somewhere in the

program, a precondition of a statement is not met, Caper uses backtracking to use or

create shared regions to meet this precondition. This approach of inferring missing proof

steps is known as logical abduction.

Starling (Windsor et al., 2017). Starling takes a di�erent approach to automation—

building on ideas by Owicki (1975), Starling is a proof outline checker. This means that

(unlike Caper) Starling requires the user to give a proof outline, i.e., a pre- and postcondi-

tion for every atomic statement in the program. Together with a set of ‘constraints’ for

encoding concurrency protocols, Starling can then prove functional correctness.

Starling’s logic is based on Views (Dinsdale-Young et al., 2013), a metatheoretical

framework that can encode various concurrent reasoning patterns. This allows Starling

to recast Owicki and Gries (1976)’s proof rule for checking non-interference and generate

veri�cation conditions from the provided proof outline. These veri�cation conditions are

then sent to appropriate solvers: to Z3 when verifying concurrent programs with shared

variables, and to the separation logic solver GRASShopper (Piskac et al., 2014b) when

verifying heap-based concurrent programs.

Voila (Wolf et al., 2021). Voila is another proof outline checker, but aimed at proving

the (stronger) property of linearizability. Programs are linearizable if their e�ects appear

to take place instantaneously for clients. Voila veri�es proof outlines in the TaDA logic

(da Rocha Pinto et al., 2014; da Rocha Pinto, 2016), which proposed the notion of logical

atomicity as a way to prove linearizability.
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Voila generates proofs from proof outlines in two steps. First, proof outlines are

expanded to proof candidates using various (syntax-driven) heuristics. These proof

candidates are then sent to Viper (Müller et al., 2016), a (sequential) separation logic

solver and veri�cation back-end for various automated tools.

Plankton (Meyer et al., 2022, 2023b). Plankton is a recent tool for verifying lineariz-

ability of a speci�c type of concurrent programs: concurrent search structures. Plankton

is based on a custom separation logic that was developed with proof automation in mind.

By sacri�cing some compositionality, their method achieves an astounding degree of

automation: it just needs a local ‘node’ invariant to prove that a program is linearizable.

Plankton builds on the �ow framework (Krishna et al., 2018), which enables local

reasoning on graph structures—even though local changes may a�ect the global state

of the search structure. Plankton’s program logic also uses a version of Owicki and

Gries (1976)’s interference check. Their challenge for proof automation is to determine

the exact interference caused by other threads, and verify that this does not invalidate

the speci�cations. Plankton determines the interference by iteratively approximating it.

Once the interference has been found, veri�cation conditions are discharged using the

Z3 SMT solver.

1.2.2 Other Notable Automated Veri�cation Tools
We have just covered tools that aim to achieve goals #1 and #4 (and optionally #2)

using separation logic: automated (and compositional) veri�cation of the correctness of

concurrent programs. We will now cover some automated tools that focus on a di�erent

subset of our goals.

Foundational, automated veri�cation of sequential programs. Various tools tar-

get foundational and automated veri�cation with separation logic, focusing mainly on

sequential programs in realistic languages. We discuss Bedrock, Re�nedC and VST.

Bedrock (Chlipala, 2011) targets an assembly-like language, in which Chlipala (2015)

veri�es a multithreaded, database-backed web application.
4
Bedrock was the �rst work

that achieved foundational and automated separation logic veri�cation. Its approach to

automation is a simple yet e�ective syntax-driven strategy, about which they remark:

Users of SMT-based veri�cation tools often describe separation logic as too

hard to automate, but we think of that statement as only true in the context

of normal SMT solvers. A simple syntactic algorithm can be very e�ective at

discharging separation logic implications.

Re�nedC (Sammler et al., 2021) targets the C language and builds on the Iris framework

for concurrent separation logic. Re�nedC uses a combination of re�nement and ownership

types to describe the state of a program. This allows Lithium, Re�nedC’s ‘separation

logic programming language’, to drive the proof search entirely by the syntax of the proof

obligations. Lithium’s proof search is partly inspired by the linear logic programming

language Lolli (Hodas and Miller, 1991), but Lithium is simpler and never backtracks.

4
Although the application is multithreaded, it is not a concurrent program. Threads are run cooperatively

(and not in parallel), yielding control to the processor by calling particular library functions. Bedrock’s

underlying semantics are fundamentally single-threaded/sequential.
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Re�nedC can automatically verify some simple concurrent libraries, such as a spinlock, if

the underlying concurrent reasoning patterns are manually veri�ed beforehand. Lithium

has been shown to be applicable to other real-world languages: besides C, it has been

used to automatically verify RISC-V and Armv8-A machine-code programs in the Islaris

project (Sammler et al., 2022).

VST-Floyd (and VST) (Cao et al., 2018; Appel et al., 2014) also target the C language—

or to be precise, CompCert C light. Since Leroy and his team have implemented and

veri�ed the CompCert compiler (Leroy, 2009) for this language, a veri�cation in VST

guarantees that both the C-program and its compiled version are correct. This means VST

can actually guarantee the correctness of the executable built from C code. VST-Floyd

provides various semi-automated tactics for symbolic execution and entailment solving,

but is focused on sequential programs. Mansky et al. (2017) also veri�ed a concurrent

messaging system in VST, but the concurrency reasoning is mostly manual.

Standalone (SMT-based) solvers for separation logic. Automatic veri�cation of se-

quential programs has also been tackled with SMT-based solvers. For example, GRASShop-

per (Piskac et al., 2014b) is able to verify various operations on data structures automat-

ically. Due to GRASShopper’s decidable speci�cation language, it can give detailed

counterexamples for incorrect programs or speci�cations. GRASShopper achieves de-

cidability by targeting a decidable fragment of separation logic, thereby limiting its

expressivity. GRASShopper is used as veri�cation back-end by Starling (see §1.2.1).

Viper (Müller et al., 2016) sacri�ces decidability for more expressivity. It supports

various permission-based reasoning patterns, such as fractional permissions (Boyland,

2003), and is used as a veri�cation back-end for various program veri�cation tools.

Although concurrency is not directly supported by Viper, concurrent reasoning patterns

can be encoded into Viper. This is the approach taken by Voila (see §1.2.1).

Other automated tools for concurrent programs. SmallfootRG (Calcagno et al.,

2007) was one of the �rst automated veri�ers for concurrent programs. It uses the

RGSep logic (Vafeiadis and Parkinson, 2007), and focuses on proving memory safety

properties—not full functional correctness. Chalice (Leino and Müller, 2009) is an in�uen-

tial automated veri�er that focuses on proving the absence of data races and deadlocks.

Another automated veri�er is Verifast (Jacobs et al., 2011; Bošnački et al., 2016). Verifast

can verify sequential Java and C programs with little help, but requires many annotations

for concurrent programs.

VerCors (Blom and Huisman, 2014; Oortwijn et al., 2017) mixes separation logic with

process algebraic reasoning to verify (concurrent) Java programs. It also uses Viper

as veri�cation back-end. By design, VerCors is less expressive than state-of-the-art

concurrent separation logics, but has been successfully applied to large-scale case studies

(Oortwijn and Huisman, 2019).

Steel (Swamy et al., 2020; Fromherz et al., 2021) is an imperative language aimed at co-

developing concurrent programs with correctness proofs in a concurrent separation logic

inspired by Iris. It is embedded in F* (Swamy et al., 2011), a proof assistant that natively

uses the Z3 SMT solver. This means Steel has great support for proving entailments that

do not mention separation logic. Various concurrent reasoning patterns must be spelled

out with ghost code, however.
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Non-separation logic approaches to linearizability. Besides separation logic, sev-

eral other methods have been considered for automatically establishing linearizability. For

example, CAVE (Vafeiadis, 2010) (and its extension Poling (Zhu et al., 2015)) uses shape

analysis to automatically verify linearizability of various concurrent data structures. The

Line-up tool (Burckhardt et al., 2010) instead uses model checking to refute linearizability.

For a more thorough survey of methods for establishing linearizability, see Dongol and

Derrick (2015).

1.3 Proof Assistants and Proof Automation

We intend to verify correctness of concurrent programs by constructing proofs inside

a separation logic. But how can we trust that a tool generates correct proofs? One

approach is to mechanize these proofs in a proof assistant such as Coq (Coq Development

Team, 2024), Lean (de Moura et al., 2015), or Isabelle/HOL (Wenzel et al., 2008). A proof

assistant is a computer program capable of verifying mathematical statements and proofs.

Proof assistants require the user to spell out and explain all required reasoning steps.

Completed proofs are sent to the kernel of the proof assistant, a relatively small program

that checks the validity of the proof (see also the overview on proof assistants by Geuvers

(2009)). To trust results shown in the proof assistant, one only needs to trust its kernel.

This keeps the trusted computing base as small as possible—in particular, one does not

need to trust the intricacies of the bespoke program logic used for veri�cation.

Foundational proofs for separation logic. The native logic of most proof assistants

is not separation logic, but rather some form of higher-order logic. We need four additional

ingredients to reason about concurrent programswith separation logic in a proof assistant:

1. a formal description of the programming language and its semantics;

2. an embedding of the separation logic inside the proof assistant;

3. a soundness proof of the separation logic: soundness allows us to conclude facts

about the behavior of a program from proofs in the separation logic,

4. an e�ective and veri�ed way to construct proofs inside the separation logic.

Formal proofs are naturally more verbose, and so it is a major challenge to combine

these ingredients in a way that proofs of program correctness still have an acceptable size.

The Iris framework for concurrent separation logic comes with all these ingredients, and

introduced the Iris Proof Mode (Krebbers et al., 2017a, 2018) precisely to ease reasoning

in the embedded separation logic. Nevertheless, as also remarked by Carbonneaux et al.

(2022), concurrent program veri�cation in Iris remains a labor-intensive endeavor.

We will improve this situation by reusing Iris’s �rst three ingredients—an embedding

of a concurrent language and its semantics, Iris’s concurrent separation logic, and its

soundness proof. Our goal is to replace the fourth ingredient, i.e., the manual program rea-

soning steps in the Iris Proof Mode, with an automatic procedure that generates veri�able

proofs. To see how, let us discuss the typical way of interacting with proof assistants.

Interacting with a proof assistant. The proof assistant we use in this thesis is Coq.

Proofs in Coq are usually constructed in an interactive manner. One �rst enters the

statement to be proven, along with any required hypotheses. The proof assistant then
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presents this goal to the user, who is asked to �ll in the proof. They can �ll in the proof

using procedures called tactics, which replace the goal with (hopefully easier) sub-goals,

or which derive information from a given hypothesis. Tactics can be used to e.g., apply

inference rules, rewrite with equalities, or to do (partial) computations. To complete a

proof, the user has to repeatedly choose appropriate tactics until all sub-goals are solved.

We have several tools available for trying to automate this process. Firstly, we can try

to prove inference rules and corollaries which make the required reasoning more concise

and ergonomical. Secondly, we can de�ne custom tactics using Coq’s meta-programming

facilities, such as the tactic languages Ltac (Delahaye, 2000) and Ltac2 (Pédrot, 2019).

Custom tactics can express procedures like ‘try to prove the goal with one of the following

tactics’, or ‘�rst apply this lemma, then use that tactic to discharge the �rst subgoal’.

A priori, there is no clear-cut procedure that automatically and e�ectively constructs

proofs of correctness for concurrent programs. Our approach therefore makes use of both

tools: we construct (and prove sound) new inference rules that are helpful for automation,

and provide tactics that automatically try to apply appropriate steps in the proof. We

now describe some techniques that helped us come up with rules and tactics.

Goal-directed proof search. An important technique for our proof automation is goal-

directed proof search. It is a key element in seminal work on linear logic programming

(Hodas and Miller, 1991; Cervesato et al., 2000), but also in recent work on separation

logic proof automation like Bedrock (Chlipala, 2011) and Re�nedC (Sammler et al., 2021).

Consider trying to �nd a proof for some proof goal 𝐺 , for which we have a set of

hypotheses Δ available to use—usually denoted as Δ ` 𝐺 in sequent calculi. The logical

system in which we work will provide several inference rules to continue the proof. The

idea of goal-directed proof search is to choose an inference rule by just looking at 𝐺 . For

example, if 𝐺 is equal to 𝐻 → 𝐺 ′ (i.e., 𝐻 implies 𝐺 ′), we could choose to always apply

the rule for introducing implications. Just looking at the top-level connective for picking

inference rules drastically reduces the search space for constructing proofs.

Finding inference rules for atomic goals. Goal-directed search helps us proceed

until the goal is a lone atomic formula. At that point, we need to �nd and use a relevant

hypothesis or lemma. Here, we take inspiration from the way connection calculi (Wallen,

1990; Otten and Kreitz, 1995; Waaler, 2001) and subformula linking (Chaudhuri, 2021;

Donato et al., 2022) �nd relevant hypotheses. Connection calculi o�er an automated

proof search procedure in various non-classical logics, such as intuitionistic or modal

logic. They do this by looking for connections, i.e., occurrences of a shared atom in two

places. The idea behind subformula linking is similar: it looks for shared subformulas in

two given formulas, but also computes a su�cient condition for one formula to imply

another. Determining the relevance of hypotheses upfront allows us to further reduce

the search space for proofs.

1.4 Key Considerations and Ideas

Concretely, the goal of this thesis is to design, verify and implement strategies for proving

the correctness of �ne-grained concurrent programs in Iris (semi-)automatically. To

build strategies that have acceptable performance and are e�ective on a wide range of

examples, we pose the following considerations:
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1. Predictability. Proof search strategies should take similar actions on similar proof

obligations. When the strategy fails to prove something, predictability is key to

�guring out why, and thereby contributes to minimizing the proof e�ort.

2. Partial progress. Proof search strategies should try to do as much of the work as

possible, even if they fail to construct a complete proof. This means proofs can be

constructed with a mixture of automatic and interactive techniques.

3. Extensibility. It should be possible to extend the proof search strategy to support

new goals, resources or proof rules. This ensures the strategy can remain useful

when faced with user-de�ned resources and in new situations.

4. Flexibility. The system should notice when proof rules are almost applicable, and

try to generalize appropriately. In particular, the strategy should be able to apply

straightforward consequences of proof rules known to the strategy.

These considerations led to the following key ideas for designing proof search strategies:

1. Goal-directed proof search. Predictability can be achieved with goal-directed proof

search. As pioneered by work on linear logic programming (Hodas and Miller,

1991; Cervesato et al., 2000), goal-directed proof search strategies determine an

appropriate tactic or inference rule by just looking at the (shape of the) goal, thereby

also greatly reducing the search space for proofs.

2. Avoid backtracking. Backtracking proof search is a ubiquitous technique for proof

automation. However, it has various unwanted properties: for example, when

it fails, zero progress is made. Perhaps surprisingly, backtracking can often be

avoided. As also advocated by Re�nedC (Sammler et al., 2021), we think it should

be—thereby improving e�ciency, predictability and facilitating partial progress.

3. Capture proof rules in a general format. Veri�cations in Iris use a variety of proof

rules. Although the speci�cs of these rules di�er, many of them can be made to

�t a general format. By designing our strategy to operate on rules of this general

format, we ensure the strategy is broadly applicable and extensible.

4. Use subformula linking. Many proof rules require the presence of a speci�c hypothe-

sis. Sometimes this hypothesis is not explicitly present, but appears in a hypothesis

beneath logical connectives. By using ideas from connection calculi (Wallen, 1990;

Otten and Kreitz, 1995; Waaler, 2001) and subformula linking (Chaudhuri, 2021;

Donato et al., 2022) to deeply inspect hypotheses, we can detect and still make use

of these proof rules, even beneath quanti�ers.

1.5 Contributions and Outline

The ideas from §1.4 have been central to the development of Diaframe over the course

of this thesis. Diaframe is a proof automation library for Iris, capable of automatically

proving the correctness of various �ne-grained concurrent programs. In Chapters 2 to 5

of this thesis, we describe the research contributions backing Diaframe. Each of these

chapters is based on existing peer-reviewed publications with light edits, and can be read

in isolation. In Chapter 6 we re�ect, and present conclusions and directions for future

work. We give an overview of the research content of the main chapters below.
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Chapter 2: Diaframe: Automated Veri�cation of Fine-Grained Concurrent Pro-
grams in Iris. In this chapter, we present the �rst version of Diaframe—an automated

and foundational tool for verifying functional correctness of �ne-grained concurrent

programs. We show that Diaframe provides automation competitive to state-of-the-art

tools, while adding foundational guarantees. This chapter is based on the publication

• Ike Mulder, Robbert Krebbers, and Herman Geuvers. “Diaframe: Automated Veri-

�cation of Fine-Grained Concurrent Programs in Iris”. Presented at the 43rd ACM

SIGPLAN International Conference on Programming Language Design and Imple-

mentation (PLDI), 2022.

The main contributions of this paper are:

• An entailment and rule format that can capture the proof goals and rules used for

proving Hoare triples in Iris’s concurrent separation logic.

• A goal-directed proof search strategy operating on these formats, that requires

backtracking only when faced with disjunctions.

• An implementation of this strategy in Coq (‘Diaframe 1.0’).

• A benchmark that compares the proof-burden of Diaframe for the correctness of

24 �ne-grained concurrent programs to that of Starling, Caper and Voila.

Chapter 3: Proof Automation for Linearizability in Separation Logic. In this

chapter, we present the second version of Diaframe—extending and generalizing the

techniques to establish linearizability of �ne-grained concurrent programs. Linearizability

can be established using Iris’s support for logically atomic triples, or by proving contextual

re�nement using ReLoC (Frumin et al., 2018, 2021b). We extend Diaframe to allow

encoding proof search strategies for general program veri�cation goals, and provide

strategies for both approaches of establishing linearizability. This chapter is based on the

publication

• Ike Mulder and Robbert Krebbers. “Proof Automation for Linearizability in Sepa-

ration Logic”. Presented at the 38th ACM SIGPLAN International Conference on

Object-Oriented Programming, Systems, Languages & Applications (OOPSLA),

2023.

We received a Distinguished Artifact Award for the artifact accompanying this paper.

The main contributions of this paper are:

• Two proof search strategies for establishing linearizability: one for proving re�ne-

ments in ReLoC, one for proving Iris’s logically atomic triples.

• A goal-directed proof search strategy that can be extended for general program

veri�cation goals, which we used to encode above two strategies.

• An implementation of this strategy in Coq (‘Diaframe 2.0’).

• An evaluation of the proof search strategies on existing and new benchmarks. We

compare the proof burden for establishing linearizability in Diaframe 2.0 to that of

Voila, and to existing interactive proofs in ReLoC and Iris.

Chapter 4: Beyond Backtracking: Connections in Fine-Grained Concurrent Sep-
aration Logic. In this chapter, we develop a general approach for developing proof

search strategies that can deal with disjunctions without backtracking. The approach is
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inspired by ideas from connection calculus (Wallen, 1990; Otten and Kreitz, 1995; Waaler,

2001). We describe how our approach can be applied to various logics, and demonstrate

this by extending Diaframe. This chapter is based on the publication

• Ike Mulder, Łukasz Czajka, and Robbert Krebbers. “Beyond Backtracking: Connec-

tions in Fine-Grained Concurrent Separation Logic”. Presented at the 44th ACM

SIGPLAN International Conference on Programming Language Design and Imple-

mentation (PLDI), 2023.

The main contributions of this paper are:

• A calculus for connection-based proof search in intuitionistic logic.

• A calculus for connection-based proof search in propositional separation logic.

• A calculus for connection-based proof search in Iris’s higher-order concurrent

separation logic, and a description of how we integrated this into Diaframe.

• An evaluation of Diaframe’s improved support for disjunctions, by benchmarking

it on the same 24 examples from Chapter 2. The original procedure required

backtracking to verify 12/24 examples, we reduce this to just 1/24 examples.

Chapter 5: Uni�cation for Subformula Linking under Quanti�ers. In this chap-

ter, we investigate an underlying technique of Diaframe’s automation: subformula linking

(Chaudhuri, 2021; Donato et al., 2022). Subformula linking is a technique for simplifying

proof goals by looking for atomic formulas that occur (deeply) in both the goal and an

hypothesis. Computing quality simpli�cations is di�cult when quanti�ers are involved:

the two existing approaches to subformula linking fail to compute good simpli�cations

in some cases. We propose a third approach: Quantifying on the Uninstantiated (QU).

This chapter is based on the publication

• Ike Mulder and Robbert Krebbers. “Uni�cation for Subformula Linking under Quan-

ti�ers”. Presented at the 13th ACM SIGPLAN International Conference on Certi�ed

Programs and Proofs (CPP), 2024.

The main contributions of this paper are:

• We present the QU rules for subformula linking under quanti�ers, and formally

prove that this system lies between the approaches of Chaudhuri (2021) and Donato

et al. (2022).

• We present a simple subformula linking procedure in Coq based on QU.

• We show the practical applicability of this system by extending and improving a

tactic from the Iris Proof Mode (Krebbers et al., 2017a) with QU linking.

• We describe how Diaframe makes essential use of QU linking in the veri�cation of

a classical readers-writer lock by Courtois et al. (1971).

Statement of contributions. Themain chapters of this thesis are existing publications

with co-authors, with very minor edits. Let me clarify my personal contributions.

For the publications in Chapters 2, 3 and 5, I am the main author. I was responsible

for the main research ideas and their implementation, and came up with �rst drafts of

the paper. My co-authors supervised the research process, provided feedback and helped

write the �nal versions of the papers.
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For the publication in Chapter 4, my co-author Łukasz Czajka and I closely collabo-

rated to develop the calculi and implementations that improve proof automation support

for disjunctions. My contribution was decisive in integrating these ideas into a practical

proof automation tool for Iris. I wrote most of the initial draft of the paper, then worked

together with my co-authors to edit and improve it to its current version.

Work not included in this thesis. The following work by the author is not included

in this thesis. It describes a recipe for proving linearizability of programs under relaxed

memory semantics, and explores the use of Diaframe for this recipe.

• Sunho Park, Jaewoo Kim, Ike Mulder, Jaehwang Jung, Janggun Lee, Robbert Kreb-

bers, and Jeehoon Kang. “A Proof Recipe for Linearizability in Relaxed Memory

Separation Logic”. Presented at the 45th ACM SIGPLAN International Conference

on Programming Language Design and Implementation (PLDI), 2024.
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Chapter 2

Diaframe: Automated
Veri�cation of Fine-Grained
Concurrent Programs in Iris

2.1 Introduction

Fine-grained concurrent programs, such as locks, reference counters, barriers, and queues,

play a critical role in modern day programs and operating systems. Based on 15 years

of research on concurrent separation logic (O’Hearn, 2007; Brookes, 2007; Brookes and

O’Hearn, 2016; Feng et al., 2007; Vafeiadis and Parkinson, 2007; Vafeiadis, 2008; Dodds

et al., 2009; Dinsdale-Young et al., 2010; Svendsen et al., 2013; Vafeiadis and Narayan,

2013; Turon et al., 2013; Dinsdale-Young et al., 2013; Turon et al., 2014; da Rocha Pinto

et al., 2014; Svendsen and Birkedal, 2014; Nanevski et al., 2014; Raad et al., 2015; Jung

et al., 2015; Doko and Vafeiadis, 2016, 2017), it has become possible to verify increasingly

complicated versions of such programs. Yet, while several tools for veri�cation of �ne-

grained concurrent programs based on these logics exist, none of them are both automated

(the majority of the proof work is carried out by the tool) and foundational (producing a

closed proof w.r.t. the operational semantics of the language).

Tools with good automation like Caper (Dinsdale-Young et al., 2017), Starling (Windsor

et al., 2017) and Voila (Wolf et al., 2021), generally use SMT (de Moura and Bjørner, 2008)

or separation-logic solvers (Piskac et al., 2014b; Müller et al., 2016) as trusted oracles.

They are capable of proving programs correct with relatively little help from the user,

allowing quick experimentation when designing algorithms. However, they have a large

trusted computing base—one needs to trust their implementation, the used solvers, the

translation of the required side conditions to the used solvers, and sometimes also the

soundness of the underpinned logic. In particular, the results of such tools do not come

with closed proofs that can be checked independently.

Foundational tools like Iris (Jung et al., 2015, 2016; Krebbers et al., 2017b; Jung et al.,

2018b), FCSL (Sergey et al., 2015) and VST (Appel et al., 2014; Cao et al., 2018) are

embedded in a proof assistant. Hence, one only needs to trust the implementation of

19
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Program + speci�cation (§2.2)

Iris entail-

ment (§ 2.3)

Diaframe proof hints (§2.4)

language and ghost state hints

custom hints provided by user

Diaframe proof

search strategy (§ 2.5)

Iris proof

calls

generates

done?

Figure 2.1: Overview of the architecture of Diaframe. User input is marked in blue.

the proof assistant and the operational semantics of the programming language, but not

the solvers or underpinned logic. Foundational tools typically provide tactics (Bengtson

et al., 2012; Appel, 2006; McCreight, 2009; Krebbers et al., 2017a; Cao et al., 2018; Krebbers

et al., 2018) to hide low-level proofs, but the bulk of the proof work needs to be spelled

out. There are two reasons for this status quo. First, foundational tools cannot rely on

trusted oracles, unless proofs are reconstructed so that the proof assistant can verify

them independently. Second, foundational tools usually have a rich logic that can prove

strong speci�cations, e.g., using impredicative invariants (Svendsen and Birkedal, 2014),

for which automation has received little attention, even in a non-foundational setting.

In this chapter, we present Diaframe—a foundational tool for automatic veri�cation

of �ne-grained concurrent programs. Diaframe extends Iris (Jung et al., 2015, 2016;

Krebbers et al., 2017b; Jung et al., 2018b)—a framework for interactive proofs in higher-

order impredicative concurrent separation logic in Coq—with powerful tactics to perform

the bulk of the proof work automatically. This means we get the best of both worlds:

closed proofs to underpin our results, while needing relatively little help from the user.

An overview of the architecture of Diaframe is displayed in Figure 2.1. Diaframe takes

two inputs from the user (marked in blue)—a program with a Hoare-style speci�cation,

and optionally a set of user-provided hints. The program and speci�cation are turned

into an Iris entailment that we prove using an extendable, goal-directed proof search

strategy. Inspired by seminal work on linear logic programming (Hodas and Miller, 1991)

and recent work on separation logic programming (Sammler et al., 2021), our strategy

interprets logical connectives as proof search instructions. These instructions simplify

and solve (a part of) this entailment, possibly generating remaining proof obligations

in the process. To make progress on the remaining obligations, our strategy looks for

applicable hints.

Identifying good hints is one of the main challenges that we face. The proof rules

of expressive logics like Iris (in particular, rules for invariants and ghost state) are not

syntax directed and therefore hard to apply automatically. We identify a suitable hint

and entailment format that makes it possible to mechanically �nd and instantiate the
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appropriate hints. Iris’s rules for symbolic execution, reasoning with invariants, and ghost

state are translated into syntax-directed variants that match the hint format. An important

feature of our entailment and hint format is that it supports a su�ciently large set of Iris’s

proof rules, while at the same time allowing for an e�cient implementation with little

backtracking. We achieve this by taking inspiration from bi-abduction (Calcagno et al.,

2009b), but adding novel ideas to support Iris’s modalities and to postpone instantiation of

existentials, which are both needed to support Iris’s invariant and ghost state mechanism.

Due to Iris’s expressive logic, which includes higher-order quanti�cation, impredica-

tive invariants, and the entirety of Coq’s logic, our proof strategy is inherently incomplete.

Nonetheless, it is able to completely solve many veri�cation goals that appear in Iris

proofs in practice. We achieve this by letting our proof strategy (and entailment and hint

format) focus on a subset of expressible Iris goals that often appear in formal veri�cation.

The proof strategy makes good partial progress on remaining goals, where it allows the

user to help out with an interactive proof or custom proof hints.

Contributions. We present Diaframe—a Coq library for Iris to automate the veri�ca-

tion of �ne-grained concurrent programs. Concretely, we make the following contribu-

tions:

• An entailment (§2.3) and hint format (§2.4) to capture goals and rules in Iris.

• A goal-directed proof search strategy for Iris that can be implemented with little

backtracking in Coq (§2.5).

• A benchmark with proofs of correctness of 24 programs using �ne-grained concur-

rency, and a comparison of proof-burden to Starling, Caper, and Voila (§2.6).

We start with two example veri�cations using Diaframe (§2.2). After covering our

contributions (§ 2.3 to 2.6), we discuss related work (§2.7), and limitations and future

work (§2.8).

2.2 Diaframe by Example

In this section we showcase Diaframe by verifying a spin lock (§2.2.1) and an Atomic Ref-

erence Counter (ARC) (§2.2.2). For both examples we will give Hoare-style speci�cations

{𝑃} 𝑒 {Φ} in Iris, where 𝑃 : iProp is a separation logic assertion and Φ :Val → iProp a

separation logic predicate on values. The triple {𝑃} 𝑒 {Φ} means that for each thread that

owns resources satisfying 𝑃 , executing 𝑒 is safe, and if the execution terminates with value

𝑤 , the thread will end up owning resources satisfying Φ𝑤 . The dependency on𝑤 allows

us to give expected return values in speci�cations. Note that Iris uses partial, not total cor-

rectness. We use the notation SPEC {𝑃} 𝑒 {®𝑦, RET 𝑣 ; 𝑄} for {𝑃} 𝑒 {𝑤. ∃®𝑦. p𝑣 = 𝑤q ∗𝑄}
to more succinctly specify return values. We are explicit about the embedding p𝜙q of
pure Coq proposition 𝜙 into Iris.

2.2.1 Veri�cation of a Spinlock

Lines 1–8 in Figure 2.2 give the implementation of a spin lock in Iris’s default ML-like

language HeapLang (Jung et al., 2016). The newlock method creates a new lock in the

unlocked state by allocating a new location with value false. The acquire method
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Definition newlock : val :=1

𝜆: <>, ref #false.2

Definition acquire : val :=3

rec: "acquire" "l" :=4

if: CAS "l" #false #true then #()5

else "acquire" "l".6

Definition release : val :=7

𝜆: "l", "l" ← #false.8

Definition lock inv 𝛾 l R : iProp :=9

∃ b : bool, l ↦→ #b ∗ (10

pb = trueq11

∨ pb = falseq ∗ locked 𝛾 ∗ R).12

Definition is lock 𝛾 (lk : val) R : iProp :=13

∃ l : loc, plk = #lq ∗ inv N (lock inv 𝛾 l R).14

Global Program Instance newlock spec R :15

SPEC {{ R }}16

newlock #()17

{{ (lk : val) 𝛾, RET lk; is lock 𝛾 lk R }}.18

Global Program Instance acquire spec 𝛾 (lk : val) R:19

SPEC {{ is lock 𝛾 lk R }}20

acquire lk21

{{ RET #(); locked 𝛾 ∗ R }}.22

Global Program Instance release spec 𝛾 (lk : val) R:23

SPEC {{ is lock 𝛾 lk R ∗ locked 𝛾 ∗ R }}24

release lk25

{{ RET #(); True }}.26

Figure 2.2: Veri�cation of a spinlock in Diaframe.

uses Compare And Set (CAS) to atomically compare the stored value of l to false, and

only if these are equal, set it to true. It returns a Boolean to indicate if the equality test

was successful. If the CAS succeeds, we have acquired the lock. If it fails, we spin by

recursively calling the acquire method. To release the lock, the release method puts

the lock back to the unlocked state (false). The # is used to inject Booleans (and other

literals) into HeapLang values.

Let us now consider the speci�cation of the lock methods, given in lines 15–26 in

Figure 2.2. These speci�cations use the representation predicates is lock 𝛾 lk 𝐶 and

locked𝛾 for locks (Hobor et al., 2008; Svendsen and Birkedal, 2014). Here, is lock𝛾 lk𝐶

expresses that the lock at location lk protects assertions 𝐶 , and locked 𝛾 expresses that

the lock is in locked state. The ghost identi�er 𝛾 is used to tie these two representation

predicates together.

Given an arbitrary assertion 𝐶 , the newlock method returns a value lk, for which

is lock 𝛾 lk 𝐶 holds. The assertion is lock 𝛾 lk 𝐶 is duplicable, meaning it can be

shared freely with multiple threads, and thus allows for multiple threads to call acquire

in parallel. Calling acquire on a lock will result in evidence locked 𝛾 that the lock is

locked, and access to assertion 𝐶 . Contrary to is lock 𝛾 lk 𝐶 , the assertion locked 𝛾 is
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not duplicable, because at most one thread can hold the lock. To call release, we need

to relinquish both locked 𝛾 and 𝐶 , and get nothing in return.

By specifying concurrent data structures with representation predicates (Dinsdale-

Young et al., 2010), clients can be easily veri�ed since the implementation details are

abstracted away. The is lock 𝛾 lk 𝐶 representation predicate is particularly �exible,

since it is impredicative (Svendsen and Birkedal, 2014; Hobor et al., 2008)—meaning

that the resources protected by the lock are described by an arbitrary separation logic

predicate 𝑅 that can contain other locks, Hoare triples, etc. To de�ne impredicative

representation predicates, we use Iris’s invariant and ghost state mechanism.

Programs using �ne-grained concurrency have multiple threads reading and mutating

shared state. In the example, the location backing the spinlock needs to be shared so that

multiple threads can attempt to acquire the lock in parallel. Since the points-to assertion

ℓ ↦→ 𝑣 of separation logic expresses exclusive ownership of the location ℓ with value 𝑣 ,

we cannot just share it between multiple threads.

To reason about shared mutable state, we use Iris’s invariant assertion 𝐿
N
, which

says that there is a (shared) invariant with name N governing the resources satisfying

Iris assertion 𝐿. Invariants 𝐿
N
are duplicable, which means that the assertion 𝐿 inside

the invariant is accessible by all threads. To do this soundly, access to 𝐿 is restricted. Only

during atomic operations (like an assignment or CAS), invariants may be ‘opened’, which

gives one temporary access to the assertion 𝐿 in the veri�cation of a thread. After the

atomic operation, the invariant must be ‘closed’, meaning one must show the assertion 𝐿

still holds.

Lines 9–14 contain the de�nition of is lock 𝛾 lk 𝐶 . It says that a value lk is a lock if

it is equal to some location l, whose stored value is governed by an invariant lock inv.

Note that in Coq, we write inv N L for 𝐿
N
. The invariant lock inv states that l should

point to a Boolean. If this Boolean is true, the lock is locked, and we know nothing else

since the resources satisfying 𝑅 are currently owned by a thread which acquired the lock.

If this Boolean is false, the lock is unlocked, and the resources satisfying 𝑅 as well as

the locked 𝛾 assertion are owned by the invariant.

The key ingredient for the veri�cation of the spinlock is the ghost assertion locked 𝛾 .

Note that this predicate is not de�ned in Figure 2.2.
1
For the purpose of this section, we

treat it as an abstract Iris primitive with the following rules:

locked-allocate

` ¤|V∃𝛾 . locked 𝛾
locked-uniqe

locked 𝛾 ∗ locked 𝛾 ` False

The �rst rule is used in the proof of newlock. It allows for the allocation of locked 𝛾

with a fresh ghost name 𝛾 . This assertion is needed to establish the invariant by proving

the right disjunct of lock inv. (The update modality ¤|V signi�es a logical update to the

ghost state. It will be explained in §2.3.2, but for now, it is enough to know that after

each program statement, we can perform a logical update in the proof.)

The second rule states that locked 𝛾 is a singleton—no two threads/resources can

simultaneously satisfy this assertion. This means that the locked 𝛾 assertion gives us

information about the global state. In the proof of release, just before executing the store,

the right disjunct of lock inv is contradictory because locked 𝛾 is in the precondition.

1
For readers familiar with Iris, we simply de�ne locked 𝛾 , Excl () 𝛾

.
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Hence, the left disjunct must hold—the location l must point to the value true, i.e., the

lock is in locked state.

The general structure of veri�cation in Diaframe is similar for other examples: we

give the implementation and speci�cation, and an invariant using appropriate ghost

assertions, after which the veri�cation will go mostly automatically. Other concurrent

programs may use di�erent ghost assertions, but all of these assertions have three types

of rules: (a) allocation/creation rules, like locked-allocate, (b) compatibility/interaction

rules, like locked-uniqe, and (c) mutation/update rules, of the form 𝑃 ∗𝑄 ` ¤|V𝑅 ∗ 𝑆 .
We will see some update rules in the next example.

2.2.2 Veri�cation of an ARC

We will now verify a version of an Atomic Reference Counter (ARC), similar to the one

veri�ed by Starling (Windsor et al., 2017) and the one used in the Rust standard library

(Rust Language, 2021). An ARC can be used to safely give multiple threads read-access

to a resource, while being able to recover write-access once all read-access references

have been dropped. Lines 2–13 in Figure 2.3 give the implementation. Values of ARC

are locations that store an integer containing the number of read-access references.

The mk arc method allocates a location with value 1, i.e., an ARC with one read-access

reference. The count method gives the number of read-access references. The clone

method increments the reference count with 1, using the atomic Fetch And Add (FAA)

instruction, while drop decrements the reference count with 1. The unwrap method is

like drop in that it will decrement the reference count—but by using a CAS operation to

set the reference count from 1 to 0, it ensures that it destroys the last reference, and spins

as long as other references have not been dropped.

To give a speci�cation of the methods of ARC, we make use of shareable assertions,

which are typically modeled with fractional permissions (Boyland, 2003). In Iris, shareable

assertions are modeled as Iris predicates 𝑃 : Q𝑝 → iProp, where iProp is the type

of Iris assertions, and Q𝑝 , {𝑞 ∈ Q | 𝑞 > 0}. Predicates 𝑃 of this type must satisfy

𝑃 𝑞1 ∗ 𝑃 𝑞2 a` 𝑃 (𝑞1 + 𝑞2) to be called shareable (or Fractional in Coq). An example of

a shareable assertion is the fractional mapsto connective ℓ ↦→𝑞 𝑣 . If 𝑞 = 1, it denotes
full ownership of (or write-access to) heap-location ℓ . If 0 < 𝑞 < 1, it denotes fractional
ownership of (or read-access to) heap-location ℓ .

As shown on line 1 in Figure 2.3, the whole veri�cation is abstracted over a shareable

assertion 𝑃 that describes the resources that are being protected by the ARC. The speci�-

cation of the methods can be found in lines 20–43. Like for the spinlock, we use several

representation predicates. The duplicable assertion is arc 𝛾 𝑣 says that a value 𝑣 is an

ARC. The non-duplicable assertion token 𝑃 𝛾 indicates a read-access reference to 𝑃 . The

non-duplicable assertion no tokens 𝑃 𝛾 indicates that write-access has been recovered,

i.e., that no read-access tokens token 𝑃 𝛾 exist.

With these predicates at hand, the speci�cation of mk arc requires 𝑃 1 (write-access)

and returns a value that is arc guarding 𝑃 , along with a single read-access token. The

count method is essentially a no-op, but shows that if we have a single-read access

token, the reference count must be positive. The method clone duplicates a read-access

token—it requires one of them, and returns two. The method drop destroys a token, and

either returns nothing, or, if this was the last token, write-access 𝑃 1, along with the
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Context (P : Qp → iProp) {HP : Fractional P}.1

Definition mk arc : val :=2

𝜆: <>, ref #1.3

Definition count : val :=4

𝜆: "a", ! "a".5

Definition clone : val :=6

𝜆: "a", FAA "a" #1 ;; #().7

Definition drop : val :=8

𝜆: "a", (FAA "a" #-1) = #1.9

Definition unwrap : val :=10

rec: "unwrap" "a" :=11

if: CAS "a" #1 #0 then #()12

else "unwrap" "a".13

Definition arc inv 𝛾 l : iProp :=14

∃ (z : Z), l ↦→ #z ∗ (15

p0 < zq%Z ∗ counter P 𝛾 (Z.to pos z)16

∨ pz = 0q ∗ no tokens P 𝛾).17

Definition is arc 𝛾 (v : val) : iProp :=18

∃ (l : loc), pv = #lq ∗ inv N (arc inv 𝛾 l).19

Global Program Instance mk arc spec :20

SPEC {{ P 1 }}21

mk arc #()22

{{ (v : val) 𝛾, RET v; is arc 𝛾 v ∗ token P 𝛾 }}.23

Global Program Instance count spec 𝛾 (v : val) :24

SPEC {{ is arc 𝛾 v ∗ token P 𝛾 }}25

count v26

{{ (p : Z), RET #p; p0 < pq%Z ∗ token P 𝛾 }}.27

Global Program Instance clone spec 𝛾 (v : val) :28

SPEC {{ is arc 𝛾 v ∗ token P 𝛾 }}29

clone v30

{{ RET #(); token P 𝛾 ∗ token P 𝛾 }}.31

Global Program Instance drop spec 𝛾 (v : val) :32

SPEC {{ is arc 𝛾 v ∗ token P 𝛾 }}33

drop v34

{{ (b : bool), RET #b; pb = falseq ∨35

pb = trueq ∗ P 1 ∗ no tokens P 𝛾 }}.36

Next Obligation.37

destruct (decide (x2 = 1)); iStepsS.38

Qed.39

Global Program Instance unwrap spec 𝛾 (v : val) :40

SPEC {{ is arc 𝛾 v ∗ token P 𝛾 }}41

unwrap v42

{{ RET #(); P 1 ∗ no tokens P 𝛾 }}.43

Figure 2.3: Veri�cation of an ARC in Diaframe.
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token-allocate

𝑃 1 ` ¤|V∃𝛾 . counter 𝑃 𝛾 1 ∗ token 𝑃 𝛾
token-interact

no tokens 𝑃 𝛾 ∗ token 𝑃 𝛾 ` False

token-mutate-incr

counter 𝑃 𝛾 𝑝 ` ¤|V (counter 𝑃 𝛾 (𝑝 + 1) ∗ token 𝑃 𝛾)

token-mutate-decr

𝑝 > 1

counter 𝑃 𝛾 𝑝 ∗ token 𝑃 𝛾 ` ¤|Vcounter 𝑃 𝛾 (𝑝 − 1)

token-mutate-delete-last

counter 𝑃 𝛾 1 ∗ token 𝑃 𝛾 `
¤|V (no tokens 𝑃 𝛾 ∗ no tokens 𝑃 𝛾 ∗ 𝑃 1)

token-access

token 𝑃 𝛾 ` ∃𝑞. 𝑃 𝑞 ∗ (𝑃 𝑞 −∗ token 𝑃 𝛾)

Figure 2.4: Rules for the counter ghost assertions.

knowledge that no tokens exist. The unwrap method, when it terminates, guarantees

retrieving write-access 𝑃 1 and no tokens.

Let us look at the de�nition of is arc in lines 14–19 in Figure 2.3. Similar to locked𝛾 ,

we treat token, no tokens and counter abstractly (these are de�ned via Iris’s extensible

ghost state mechanism, see our appendix (Mulder et al., 2022a) for the de�nition), and

show only the allocation, interaction and update rules in Figure 2.4. As witnessed by

token-access, these ghost-state assertions are used to convert fractional permissions

into counting permissions (Bornat et al., 2005), which are more natural for ARC.

Similar to the spinlock, we de�ne a value to be is arc if it is a location whose stored

value is governed by an invariant. This invariant arc inv tells us that the location points

to some integer 𝑧, which satis�es: (1) 𝑧 = 0, and we know that no tokens currently exist,

or (2) 𝑧 > 0, and we own resources satisfying counter 𝑃 𝛾 𝑧. The counter 𝑃 𝛾 𝑝 assertion
states the knowledge that precisely 𝑝 > 0 tokens currently exist—which matches what

we want ℓ ↦→ 𝑝 to mean.

To prove the speci�cation of the count method, we use token-allocate, which

allows us to establish the left disjunct of arc inv. For proving the speci�cation of count,

we rely on token-interact to prove that the right disjunct of arc inv is contradictory.

For the speci�cation of clone, we again need token-interact. When closing the invari-

ant, we need to apply token-mutate-incr at the right moment to change the obtained

counter 𝑃 𝛾 𝑝 to the required counter 𝑃 𝛾 (𝑝 + 1). This also gives us the extra token

that we need in the postcondition.

Integration with interactive proofs. In the veri�cation of drop, Diaframe encoun-

ters a goal it cannot solve automatically, and gets stuck. The user is presented with the

following (slightly simpli�ed) proof state in the Iris Proof Mode (Krebbers et al., 2017a,

2018), where they can use Coq or Iris tactics to help:
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H : 0 < x2
--------------------------------------------------------------------------------
"H1" : inv N (arc inv 𝛾 l)
----------------------------------------�
"H2" : token P 𝛾
"H5" : counter P 𝛾 (Z.to pos x2)
----------------------------------------∗

 (

|V>\↑𝑁 >\↑𝑁
) 



p0 < x2 + -1q ∗ counter 𝑃 𝛾 (Z.to pos (x2 + -1))

∨ px2 + -1 = 0q ∗ no tokens 𝑃 𝛾

(∗) |V> > WP #x2 = #1 {{ v, . . . }}

The statement below ---∗ indicates our current goal, and contains a disjunction. Both

sides of the disjunction contain a pure statement p𝜙q, but neither of these follow from

the relevant hypothesis H. On inspection, we need to distinguish two cases: x2 =

1 and x2 > 1. In the �rst case, our token was the last one, and we need to use

token-mutate-delete-last to �nish the proof. In the second case, other tokens re-

main, and we need to use token-mutate-decr.

In Figure 2.3, the manual step consists precisely of the case distinction between x2 = 1
and x2 > 1, after which Diaframe’s iStepsS can �nish the proof. Even though Diaframe

could not �gure out the required case distinction automatically, it makes good partial

progress here. This is because the automation only performs limited backtracking, and

simply stops when it encounters a goal it cannot make progress on.

Note that token-mutate-delete-last creates two no tokens resources: one for the

invariant, and one for the postcondition of drop or unwrap. The no tokens resource in the

postcondition ensures that drop cannot return true (i.e., delete the last remaining token)

while there are still other tokens available. To be precise, if with two tokens we call drop

and clone in parallel, we can prove that drop returns false using token-interact.

Generality. The ghost assertions token, no token and counter are not connected to

a memory location and are thus not speci�c for the veri�cation of ARC. We also use

them in the veri�cation of e.g., reader-writer locks. The only connection between these

assertions and the ARC lies in the de�nition of the invariant arc inv, which ties the

physical state of the ARC to an appropriate ghost-state. The rules for the assertions in

Figure 2.4 are available to the Diaframe proof search strategy, and applying them requires

no extra annotations, except for the manual case distinction for drop.

2.3 Diaframe’s Entailment Format

In this section we explain some of the challenges one faces when automating proofs of

�ne-grained concurrent programs in Iris. We start with some background on verifying

weakest preconditions of sequential programs using symbolic execution (§ 2.3.1), as

commonly done in interactive and automatic tools in proof assistants (Krebbers et al.,

2017a; Charguéraud, 2020; Sammler et al., 2021). We then extend this approach with

support for Iris’s invariant mechanism to verify �ne-grained concurrent programs (§2.3.2).

We conclude with an overview of the Diaframe entailment format and proof strategy

(§2.3.3), which serves as a starting point for the description of our hint format (§2.4).
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wp-value

Φ 𝑣 ` wp 𝑣 {Φ}

wp-bind

wp 𝑒
{
𝑤. wp 𝐾 [𝑤] {Φ}

}
` wp 𝐾 [𝑒] {Φ}

wp-frame

𝑅 ∗ wp 𝑒 {Φ} ` wp 𝑒 {𝑣 . 𝑅 ∗ Φ 𝑣}

wp-mono

∀𝑣 . Ψ 𝑣 ` Φ 𝑣
wp 𝑒 {Ψ} ` wp 𝑒 {Φ}

wp-faa

ℓ ↦→ 𝑧1 ` wp (FAA ℓ 𝑧2) {𝑤. p𝑤 = 𝑧1q ∗ ℓ ↦→ (𝑧1 + 𝑧2)}

Figure 2.5: Some of Iris’s rules for weakest preconditions.

2.3.1 Goal-Directed Reasoning with WP
Hoare triples are not a primitive of Iris, they are de�ned in terms of weakest preconditions:

{𝑃} 𝑒 {Φ} , 𝑃 ` wp 𝑒 {Φ}.

To get some intuition for the semantics of wp 𝑒 {Φ}, assume for a moment that 𝑃 and

𝑄 are predicates on heaps (ignoring Iris’s ghost state and step-indexing), and Φ is a

predicate on values and heaps. Entailment 𝑃 ` 𝑄 means that for every heap ℎ, if 𝑃 ℎ

holds, then 𝑄 ℎ holds. The assertion wp 𝑒 {Φ} describes the heaps for which execution

of 𝑒 is safe (cannot get stuck), and if 𝑒 terminates with value 𝑣 and heap ℎ′, then Φ 𝑣 ℎ′

holds. De�ning {𝑃} 𝑒 {Φ} as above then indeed gives the Hoare triple its intended and

intuitive semantics.

Weakest preconditions make it possible to decouple the precondition from the Hoare

triple, and view it as a regular separation logic entailment. In particular, they give us

access to Iris’s existing infrastructure (Krebbers et al., 2017a, 2018) for proving entailments.

However, Iris’s primitive rules for weakest preconditions in Figure 2.5 are not syntax

directed and can thus not be directly applied in an interactive or automatic proof search

strategy. Throughout this section, we focus on transforming the rulewp-faa into a syntax-

directed version, i.e., one that is applicable for arbitrary premises and postconditions.

Recall that FAA is used in the clone and drop methods of ARC (§2.2.2).

Suppose we are proving the following entailment:

Δ ` wp (FAA ℓ 𝑧) {Φ}.

(From now on, we will often put an environment Δ before the turnstile. The environment

Δ is a list of assertions 𝑃1, . . . , 𝑃𝑛 , for which Δ ` 𝑄 i� 𝑃1 ∗ · · · ∗ 𝑃𝑛 ` 𝑄 .)
We want to prove this entailment by applying wp-faa, but we are not yet in shape

to do so. That is because Δ will typically not be just ℓ ↦→ 𝑧1, and Φ will typically not be

the precise postcondition of wp-faa. Hence, to apply ‘small footprint’ speci�cations like

wp-faa we need to �nd a ‘frame’ 𝑅 and a value 𝑧1, such that Δ ` 𝑅 ∗ ℓ ↦→ 𝑧1. We can then

use a combination of wp-faa, wp-frame and wp-mono, to transform our entailment

into 𝑅 ∗ ℓ ↦→ (𝑧1 + 𝑧2) ` Φ 𝑧1.
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Instead of having to determine the frame𝑅 in advance, one can construct an alternative

rule for goal-directed reasoning, which will be easier to apply automatically:

wp-faa-ramify

Δ ` 𝑙 ↦→?𝑧1 ∗
(
∀𝑣 . (p𝑣 = ?𝑧1q ∗ ℓ ↦→ (?𝑧1 + 𝑧2)) −∗ Φ 𝑣

)
Δ ` wp (FAA ℓ 𝑧2) {Φ}

In this shape, the rule is an instance of the rami�ed frame rule (Charguéraud, 2020; Hobor

and Villard, 2013). Note that we have put a question mark in front of 𝑧1 to (informally)

signify that 𝑧1 will be an existential variable (evar) at rule application—we should be able

to �nd a 𝑧1 for which this is provable, but do not yet know which one it will be.
2
When

we �nd an hypothesis of shape ℓ ↦→ 𝑧 in Δ, we can unify 𝑧1 with 𝑧 and continue.

We have refrained from substituting ?𝑧1 for 𝑣 in wp-faa-ramify so that it is more

apparent how the rule generalizes for any Hoare-style speci�cation of an expression 𝑒:

sym-ex

{𝑃} 𝑒 {Ψ} Δ ` 𝑃 ∗ (∀𝑣 . Ψ 𝑣 −∗ wp 𝐾 [𝑣] {Φ})
Δ ` wp 𝐾 [𝑒] {Φ}

This rule additionally incorporates Iris’s rule wp-bind, which allows the expression 𝑒 to

appear inside a call-by-value evaluation context 𝐾 , instead of at the top-level.

Supposing we can prove separating conjunctions, sym-ex gives rise to a symbolic-

execution based proof search strategy for straight-line sequential code. Suppose our

goal is Δ ` wp 𝑒 {Φ}. If 𝑒 is a value 𝑣 , apply wp-value and prove Δ ` Φ 𝑣 . Else, �nd an

evaluation context 𝐾 and subexpression 𝑒 ′ with 𝑒 = 𝐾 [𝑒 ′], and a speci�cation {𝑃} 𝑒 ′ {Ψ} .
Apply sym-ex, prove the separating conjunction, introduce variables, introduce the left-

side of the magic wand, and repeat. In the terminology of Chalice (Leino and Müller, 2009)

and Viper (Müller et al., 2016): exhale 𝑃 , then inhale Ψ 𝑣 and go on to prove wp 𝐾 [𝑣] {Φ}.

2.3.2 Goal-Directed Reasoning with Invariants

We will now extend the naive proof search strategy from §2.3.1 with support for Iris’s

invariant mechanism to handle programs with �ne-grained concurrency. Concretely, we

will present a rule that extends sym-ex, which can also be used in case the precondition

𝑃 is inside an invariant (as is the case for all examples in §2.2). We will �rst recapitulate

Iris’s original proof rule for accessing invariants:

inv-open-wp

Δ, 𝐿
N
, ⊲ 𝐿 ` wpE\N 𝑒 {𝑣 . ⊲ 𝐿 ∗ Φ 𝑣} atomic 𝑒 N ⊆ E

Δ, 𝐿
N ` wpE 𝑒 {Φ}

This rule is quite a mouthful, so let us go over it step by step. First, to deal with invariants,

weakest preconditions in Iris wpE 𝑒 {Φ} have a mask annotation E, signifying the set of

names of invariants that can be opened. This is necessary to ensure invariants are not

2
We could instead weaken the premise of wp-faa-ramify to Δ ` ∃𝑧1 . 𝑙 ↦→ 𝑧1 ∗ . . .. This existential

quanti�cation will play an important role in §2.3.2. We choose to present wp-faa-ramify without explicit

existential quanti�cation here to show the relation to the rami�ed frame rule.
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opened more than once (i.e., to avoid reentrancy, which is unsound). Omitted masks are

>, meaning all invariants can still be opened.

Suppose that we have an invariant 𝐿
N
, and are verifying an atomic expression 𝑒 .

Rule inv-open-wp states that we are allowed to look inside the invariant and obtain 𝐿 in

the proof context, but then must show that 𝐿 still holds in the postcondition of the WP.

After we have opened the invariant with name N , the mask changes to E \ N so that

we cannot open the invariant twice. The later modality (⊲) (Nakano, 2000; Appel et al.,

2007) is needed for technical reasons caused by the fact that invariants are impredicative

(Svendsen and Birkedal, 2014; Jung et al., 2018b), i.e., the resource 𝐿 in an invariant can be

any resource, including invariants and weakest preconditions. Handling later modalities

involves some additional bookkeeping, which Diaframe performs automatically, but we

gloss over in this thesis.

We now show why our sym-ex rule for symbolic execution from §2.3.1 needs to be

extended for programs involving �ne-grained concurrency. Consider the FAA operation

in the clone method of the ARC (§2.2.2). The challenge of verifying this method is that

the ℓ ↦→ we need as part of the precondition for FAA is not in the proof context, but in

an invariant ∃(𝑧 : Z). ℓ ↦→ 𝑧 ∗ 𝐽 𝑧 N . When we apply sym-ex eagerly, we lose the ability

to open invariants using inv-open-wp.

One approach is to try to make progress with sym-ex—if this is possible, we are

alright. If not, we backtrack, and open an invariant with inv-open-wp, and retry. This is

similar to the approach employed by Caper (Dinsdale-Young et al., 2017). We do not take

a backtracking approach in Diaframe since it does not mix nicely with interactive proofs.

We therefore present an extended symbolic execution rule, sym-ex, which allows us

to open invariants lazily:

sym-ex-fupd-exist

∀®𝑥 . {𝑃} 𝑒 {Ψ}
atomic 𝑒 ∨ E1 =?E2 Δ ` |VE1 ?E2 ∃®𝑥 . 𝑃 ∗

(
∀𝑤. Ψ𝑤 −∗ |V?E2 E1wpE1 𝐾 [𝑤] {Φ}

)
Δ ` wpE1 𝐾 [𝑒] {Φ}

This rule contains Iris’s fancy update modality |VE1 E2
, and a quanti�ed Hoare triple

∀®𝑥 . {𝑃} 𝑒 {Ψ} .
The fancy update modality |VE1 E2

is used in Iris’s de�nition of weakest preconditions,

and is the component that makes opening invariants possible. Semantically, |VE1 E2 𝑃
means: assuming all invariants with names in E1 hold, then 𝑃 holds and additionally all

invariants with names in E2 hold. To work with the fancy update modality, Iris has the

following rules:

inv-open-fupd

N ⊆ E

𝐿
N ` |VE E\N

(
⊲ 𝐿 ∗

(
⊲ 𝐿 −∗ |VE\N E True

) ) bupd-intro

𝑃 ` ¤|V𝑃

bupd-fupd

¤|V𝑃 ` |VE E 𝑃

fupd-elim

𝑃 ` |VE1 E2𝑄 Δ, 𝑄 ` |VE2 E3𝑅

Δ, 𝑃 ` |VE1 E3𝑅



2.3. DIAFRAME’S ENTAILMENT FORMAT 31

The inv-open-fupd rule makes the semantics of invariants precise: by removingN from

the mask, we get access to 𝐿, and if we wish to restore the mask, we must hand back 𝐿

via the closing update (⊲ 𝐿 −∗ |VE\N E True). The rule fupd-elim allows us to compose

fancy updates, and by combining bupd-fupd and bupd-intro we can introduce the last

fancy update when done. Note that bupd-fupd and fupd-elim enable us to perform

logical updates (like those in Figure 2.4) when the goal contains a fancy update after the

turnstile.

The quanti�ed Hoare triple ∀®𝑥 . {𝑃} 𝑒 {Ψ} states that the Hoare triple {𝑃} 𝑒 {Ψ} holds
for all instantiations of the auxiliary variables in ®𝑥 . Here, 𝑃 should and Ψ may refer to

the variables in ®𝑥 . For FAA, we have:

∀𝑧1 . {ℓ ↦→ 𝑧1} FAA ℓ 𝑧2 {𝑤. p𝑤 = 𝑧1q ∗ ℓ ↦→ (𝑧1 + 𝑧2)} .

The essential feature of sym-ex-fupd-exist is that once we apply the rule, we re-

tain the ability to open (any number of) invariants through a combination of the rules

fupd-elim and inv-open-fupd. Our new rule is strictly stronger than the rule sym-ex

from § 2.3.1—the update modalities can simply be introduced using bupd-fupd and

bupd-intro, and the existentials can be instantiated with evars.

We now show why it is necessary to existentially quantify under the fancy update in

the new rule. Let us try to use sym-ex-fupd-exist wrongly by instantiating existentials

eagerly in a goal that arises during the veri�cation of an FAA in ARC (§2.2.2):

ℓ ↦→ 𝑧, ⊲ 𝐽 𝑧, . . . ` |V>\N ?E ℓ ↦→?𝑧1 ∗ . . .
⊲(∃(𝑧 : Z). ℓ ↦→ 𝑧 ∗ 𝐽 𝑧), . . . ` |V>\N ?E ℓ ↦→?𝑧1 ∗ . . .

∃(𝑧 : Z). ℓ ↦→ 𝑧 ∗ 𝐽 𝑧 N ` |V> ?E ℓ ↦→?𝑧1 ∗ . . .

∃(𝑧 : Z). ℓ ↦→ 𝑧 ∗ 𝐽 𝑧 N ` |V> ?E ∃𝑧 ′. ℓ ↦→ 𝑧 ′ ∗ . . .

∃(𝑧 : Z). ℓ ↦→ 𝑧 ∗ 𝐽 𝑧 N ` wp 𝐾 [FAA ℓ 1] {Φ}

One should read this proof derivation from bottom to top. When encountering an FAA, we

apply sym-ex-fupd-exist, but (wrongly) perform an eager instantiation of the existential

𝑧 ′ with an evar ?𝑧1. Then we use inv-open-fupd and fupd-elim to open the invariant.

The �nal step uses some properties of the later modality to eliminate the existential and

the later around ℓ ↦→ 𝑧. One might think we are now done: just unify ?𝑧1 with 𝑧 and ?E
with > \ N , and continue! However, this is not sound—the evar ?𝑧1 cannot be uni�ed
with 𝑧, since 𝑧 was introduced after 𝑧1. Stated in other words, we could not have chosen

𝑧1 to be equal to 𝑧, since at that point 𝑧 was not in our context. To correctly deal with

existentials, the Diaframe proof search strategy delays the instantiation of existentials.

2.3.3 Overview of the Diaframe Strategy
To automatically prove program speci�cations ∀®𝑥 . {𝑃} 𝑒 {Φ} , Diaframe’s proof strategy

repeatedly performs the following actions (a formal presentation is given in §2.5):

1. If the goal is Δ ` ∀𝑥 . 𝐺 or Δ ` 𝑈 −∗ 𝐺 , introduce the ∀ or −∗. Then “clean”

the hypothesis 𝑈 by (a) eliminating separating conjunctions, disjunctions, and

existentials, (b) moving pure assertions p𝜙q into the Coq context, (c) merging
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assertions (e.g., ℓ ↦→𝑞 𝑤 and ℓ ↦→𝑝 𝑣 become ℓ ↦→𝑝+𝑞 𝑣 and 𝑣 = 𝑤 ), (d) deriving

contradictions (e.g., using locked-uniqe).

2. If the goal is Δ ` wp 𝑣 {Φ}, with 𝑣 a value, continue with Δ ` |V> >Φ 𝑣 .

3. If the goal isΔ ` wp 𝐾 [𝑒] {Φ}, use our new rule sym-ex-fupd-exist to symbolically

execute 𝑒 . Our new goal has the shape Δ ` |VE1 ?E2 ∃®𝑥 . 𝐿 ∗𝐺 .

4. If the goal is Δ ` |VE1 E2 ∃®𝑥 . 𝐿 ∗𝐺 , use associativity of separating conjunction to

rewrite it into |VE1 E2 ∃®𝑥 . 𝐴 ∗ 𝐺 ′ where 𝐴 is an atom. Pure conditions p𝜙q that
appear in the process are solved with Coq tactics like lia. We make progress on 𝐴

by �nding a hint.

For this strategy to be e�ective, �nding hints (in the last step) is crucial. These

hints need to make sure that the resulting goal is again of one of the above entailment

formats so the strategy can make repeated progress. When operating on entailments

of format Δ ` |VE1 E2 ∃®𝑥 . 𝐿 ∗𝐺 , it is essential that modalities and existentials are only

introduced/instantiated when the right invariants have been opened and the necessary

ghost updates have been performed—not earlier.

The Diaframe proof strategy is inspired by the idea of interpreting logical connectives

as instructions to control the proof search, as done in the seminal work on linear logic

programming (Hodas and Miller, 1991; Cervesato et al., 2000) and recent work on the

separation logic programming language Lithium (Sammler et al., 2021). Other recent work

by Chlipala (2011, 2015) has also shown that using the syntax of the goal to guide proof

search works well for automatic foundational veri�cation. The inspiration by Lithium

can be seen most clearly in the reversible actions described in Items (1-a) and (1-b)—these

are the same as those performed by Lithium. The key di�erence is that we do not operate

on top-level connectives, but on connectives that appear below a modality and a number

of existentials, to support Iris’s invariants and ghost state.

2.4 Diaframe’s Hint Format

In this section, we describe the process of �nding hints. We consider the following

kinds of base hints: (a) hints for ghost state such as those corresponding to the rules

in Figure 2.4, (b) hints for language-speci�c connectives such as the ↦→ connective, and

(c) user-de�ned hints to guide the proof of a speci�c program in case the automation falls

short.

There are two ways in which hints can be selected. First, goal-and-hypothesis directed

hints use the shape of the goal and the shape of a hypothesis as keys. Examples are hints

for mutating ghost state. Second, last-resort goal-directed hints are used if no hints that

key on a hypothesis can be found. Examples are invariant allocation and ghost state

allocation.

Hints are speci�ed using a hint format (§ 2.4.1) that is inspired by the technique

of bi-abduction (Calcagno et al., 2009b). Aside from the base hints (§2.4.2), Diaframe

provides recursive hints to close the base hints under connectives like invariants, magic

wands, and separating conjunctions (§2.4.3).
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2.4.1 Bi-Abduction Hints
The hint format of Diaframe is as follows:

𝐻 ∗ [®𝑦;𝐿] �
[
|VE1 E2 ]

®𝑥 ;𝐴 ∗ [𝑈 ] , ∀®𝑦.
(
𝐻 ∗ 𝐿 ` |VE1 E2 (∃®𝑥 . 𝐴 ∗𝑈 )

)
Hints use a hypothesis 𝐻 and goal 𝐴 as key/input. Outputs are denoted between [ ]
syntax: 𝐿 is a (possibly existentially quanti�ed) side condition, while𝑈 is the residue we

obtain after using the hint. Last-resort hints have 𝜀1 for the hypothesis 𝐻 . The assertion

𝜀1 is an opaque marker whose semantics is True, but is treated di�erently by the proof

search strategy.

It is instructive to check the scope of the existentials. The premise 𝐻 is a given

hypothesis, so ®𝑥 and ®𝑦 do not occur in 𝐻 . The conclusion 𝐴 is a given existential goal, so

®𝑥 occurs in 𝐴, but ®𝑦 does not. The side condition 𝐿 is existentially quanti�ed with ®𝑦. The
residue 𝑈 is allowed to contain both ®𝑥 and ®𝑦 so it can be related to the side condition 𝐿

and the goal 𝐴.

We also call Diaframe’s hints “bi-abduction hints” because in essence, they are bi-

abduction (Calcagno et al., 2009b) behind a modality and existentials. The bi-abduction

problem in separation logic asks to �nd, given an hypothesis 𝐻 and goal 𝐴, a ‘frame’ and

‘antiframe’ such that 𝐻 ∗ ?antiframe ` 𝐴 ∗ ?frame . Our hints’ shape is also similar to the

residuation judgment from Cervesato et al. (2000), but has an additional frame.

We can apply a Diaframe bi-abduction hint as follows:

biabd-hint-apply

𝐻 ∗ [®𝑦;𝐿] �
[
|VE3 E2 ]

®𝑥 ;𝐴 ∗ [𝑈 ] Δ ` |VE1 E3 ∃®𝑦. 𝐿 ∗ (∀®𝑥 . 𝑈 −∗ 𝐺)
Δ, 𝐻 ` |VE1 E2 ∃®𝑥 . 𝐴 ∗𝐺

The Diaframe implementation will go over the hypotheses 𝐻 in the context Δ from left

to right (with 𝜀1 last) until it �nds a hint 𝐻 ∗ [®𝑦;𝐿] �
[
|VE3 E2 ]

®𝑥 ;𝐴 ∗ [𝑈 ] in the hint

database. This involves some backtracking, but only locally—whenever a hint (and thus a

side condition 𝐿 and residue 𝑈 ) has been found for a hypothesis 𝐻 , we use that hint and

will never backtrack to consider a di�erent choice. Note that after applying the rule, the

resulting entailment has the same format, allowing for repeated applications of hints.

There are no theoretical guarantees that choosing the �rst hypothesis for which a

hint can be found is always desirable. Indeed, it is easy to construct arti�cial examples

where this approach makes the goal unprovable. However, in the practical examples we

have seen, there is usually either precisely one such hypothesis, or there are more such

hypotheses, but the choice is immaterial. This may be a result of the substructural nature

of separation logic: since resources cannot be duplicated, any way to obtain a required

resource is usually the correct way.

2.4.2 Base Hints
Example 1: Ghost state mutation. We transform the rule token-mutate-decr

(which is used to verify the drop method of ARC in §2.2.2) into the following hint:

counter 𝑃 𝛾 𝑝 ∗ [ ; token 𝑃 𝛾 ∗ p𝑝 > 1q] �
[
|VE E ] ; counter 𝑃 𝛾 (𝑝 − 1) ∗ [True]
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If we use biabd-hint-apply with this hint, we get:

Δ ` |VE E token 𝑃 𝛾 ∗ p𝑝 > 1q ∗ (True −∗ 𝐺)
Δ, counter 𝑃 𝛾 𝑝 ` |VE E counter 𝑃 𝛾 (𝑝 − 1) ∗𝐺

Here we see that to decrement the counter, we need to solve the side condition token 𝑃 𝛾 ,

before we can continue with 𝐺 .

Example 2: Invariant allocation. In Iris, invariants are allocated using the rule

⊲ 𝐿 ` |VE E 𝐿
N
, which we transform into the following hint:

𝜀1 ∗ [ ; ⊲ 𝐿] �
[
|VE E ] ; 𝐿

N ∗
[
𝐿
N ]
.

Due to the 𝜀1, this is a last-resort goal-directed hint. We do not make it hypothesis

directed, because ⊲ 𝐿 will usually not be precisely in the context. Since invariants are

duplicable we give back 𝐿
N
in the residue, so that it can be used again.

Example 3: Ghost state allocation. We transform the rule locked-allocate (which

is used to verify the newlock method in §2.2.1) into the following hint:

𝜀1 ∗ [ ; True] �
[
|VE E ] 𝛾 ; locked 𝛾 ∗ [True] .

Due to the 𝜀1, this is again a last-resort goal-directed hint. That is simply because the

rule has no premise.

Example 4: Points-to assertion. We have speci�c hints for HeapLang’s fractional

points-to assertion ℓ ↦→𝑞 𝑣 :

ℓ ↦→𝑞 𝑣1 ∗ [ ; p𝑣1 = 𝑣2q] �
[
|VE E ] ; ℓ ↦→𝑞 𝑣2 ∗ [True] .

This hint says that if we have a points-to for ℓ , but need one with another value, we

should prove that both values are equal. The following hint handles di�erent fractions:

𝑞1 < 𝑞2

ℓ ↦→𝑞1 𝑣1 ∗
[
𝑣3; p𝑣1 = 𝑣2q ∗ ℓ ↦→(𝑞2−𝑞1) 𝑣3

]
�

[
|VE E ] ; ℓ ↦→𝑞2 𝑣2 ∗ [p𝑣1 = 𝑣3q]

This hint applies if the fraction 𝑞2 in the goal is bigger than the fraction 𝑞1 in the

hypothesis, and hence has the side condition ℓ ↦→(𝑞2−𝑞1) 𝑣3. Note that 𝑣3 is existentially

quanti�ed, meaning that the side condition can be established for any value. This is

sound by the agreement property of ↦→. This generality is used in the veri�cation of e.g.,

the CLH-lock. There is a dual hint for the case 𝑞1 > 𝑞2.

2.4.3 Recursive Hints

It is often the case that a base hint almost—but not precisely—matches. The premise might

appear under a magic wand or in an invariant, or the goal might provide a speci�c witness

while looking for an existential. Diaframe therefore includes a number of recursive hints
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to close the base hints under the connectives of higher-order separation logic. For

example:

𝑈1 ∗ [®𝑧;𝐿2] �
[
|VE1 E2 ]

®𝑦;𝐴 ∗ [𝑈2]
(𝐿1 −∗ 𝑈1) ∗ [®𝑧;𝐿2 ∗ 𝐿1] �

[
|VE1 E2 ]

®𝑦;𝐴 ∗ [𝑈2]
This rule states that if there is a hint from the conclusion𝑈1 of the wand to the goal 𝐴,

then there is a hint from the wand 𝐿1 −∗ 𝑈1 itself, where the premise 𝐿1 of the wand

is added to the side condition 𝐿2. A more complicated recursive hint is the rule for

invariants:
3

⊲ 𝐿1 ∗ [®𝑧;𝐿2] �
[
|VE\N E\N

]
®𝑦;𝐴 ∗ [𝑈 ]

𝐿1
N ∗ [®𝑧;𝐿2 ∗ pN ⊆ Eq] �

[
|VE E\N

]
®𝑦;𝐴 ∗

[
𝑈 ∗ (⊲ 𝐿1 −∗ |VE\N E 𝜒 )

]
This rule states that there is a hint from an invariant 𝐿1

N
to a goal 𝐴, if there is a

hint from the contained assertion 𝐿1 to that atom. We get N ⊆ E as an additional side

condition, and receive the closing update (⊲ 𝐿1 −∗ |VE\N E 𝜒 ) as the residue. Similar to 𝜀1,

the assertion 𝜒 is an opaque marker whose semantics is True, but is treated di�erently

by the proof search strategy to enforce closing invariants.

2.5 Formal Description of the Proof Strategy

In this section we will present an excerpt of the formal grammar of Diaframe (§2.5.1),

and a number of cases of the formal proof search strategy (§2.5.2). We then present an

extension of Diaframe to handle disjunctions (§2.5.3).

2.5.1 Grammar of Diaframe
We provide a representative subset of the grammar (a full description can be found in the

appendix (Mulder et al., 2022a)):

atoms 𝐴 ::= wp 𝑒 {𝑣 . 𝐿} | 𝜒 | 𝐿 N | . . .

left-goals 𝐿 ::= p𝜙q | 𝐴 | 𝐿 ∗ 𝐿 | ∃𝑥 . 𝐿

unstructureds 𝑈 ::= p𝜙q | 𝐴 | 𝑈 ∗𝑈 | ∃𝑥 . 𝐿 | ∀𝑥 . 𝑈 | 𝐿 −∗ 𝑈 | |VE1 E2𝑈

extended 𝐻 ::= 𝜀1 | 𝑈

clean hypotheses 𝐻𝐶 ::= 𝐴 | ∀𝑥 . 𝑈 | 𝐿 −∗ 𝑈 | |VE1 E2𝑈

environments (1) Γ ::= ∅ | Γ, 𝑥 | Γ, 𝜙

environments (2) Λ ::= ∅ | 𝐻𝐶 ,Λ Δ ::= Λ, 𝜀1

goals 𝐺 ::= ∀𝑥 . 𝐺 | 𝑈 −∗ 𝐺 | wp 𝑒 {𝑣 . 𝐿} | |VE1 E2 𝐿 | ‖ |VE1 E2‖ ∃®𝑥 . 𝐿 ∗𝐺
3
In the implementation, this rule is a consequence of other recursive rules.
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The entailments we wish to solve are of the form Γ;Δ ` 𝐺 . The atoms 𝐴 by default only

consist of weakest preconditions wp 𝑒 {𝑣 . 𝐿}, the marker 𝜒 (§2.4.3) and invariants 𝐿
N
.

The ellipsis (. . .) indicates that the set of atoms may be extended by libraries, adding

language-speci�c constructs like ℓ ↦→ 𝑣 or ghost assertions like locked 𝛾 . The de�nition

of Δ explicitly sets the last-resort marker 𝜀1 as the last hypothesis. De�ning Δ in this

way avoids having special cases in the description of the strategy, and is close to the Coq

implementation.

We have two syntactical categories related to hypotheses: 𝐻𝐶 and𝑈 . Essentially,𝑈 is

the class of hypotheses for which we are able to recursively �nd hints. At introduction

into the context Δ, we can decompose these into𝐻𝐶 . The goal ‖ |VE1 E2 ‖ ∃®𝑥 . 𝐿 ∗𝑅 in𝐺 is a

‘synthetic’ representation of |VE1 E2 ∃®𝑥 . 𝐿∗𝑅with the condition FV(𝐿) = ®𝑥 . This condition
ensures that during hint search we only consider and instantiate variables that are bound

in 𝐿, and leave the rest existentially quanti�ed. To uphold this condition, our strategy

�rst transforms goals like |VE1 E2 ∃𝑣1 𝑣2 . ℓ1 ↦→ 𝑣1 ∗ ℓ2 ↦→ 𝑣2 into ‖ |VE1 ?E′ ‖ ∃𝑣1 . ℓ1 ↦→
𝑣1 ∗ |V?E′ E2 ∃𝑣2 . ℓ2 ↦→ 𝑣2. The strategy will continue on this goal by �rst obtaining

ℓ1 ↦→ 𝑣 ′ and instantiating just 𝑣1 with 𝑣
′
. Only after that, it will consider the remaining

goal |V?E′ E2 ∃𝑣2 . ℓ2 ↦→ 𝑣2.

2.5.2 The Proof Search Strategy

If our goal is Γ;Δ ` 𝐺 , we do a case analysis on 𝐺 :

1. 𝐺 = ∀𝑥 . 𝐺 ′: Continue with Γ, 𝑥 ;Δ ` 𝐺 ′.

2. 𝐺 = 𝑈 −∗ 𝐺 ′: Case analysis on𝑈 :

(a) 𝑈 = p𝜙q: Continue with Γ, 𝜙 ;Δ ` 𝐺 ′.
(b) 𝑈 = (𝑈1 ∗𝑈2): Continue with Γ;Δ ` 𝑈1 −∗ 𝑈2 −∗ 𝐺 ′.
(c) 𝑈 = (∃𝑥 . 𝐿). Continue with Γ;Δ ` ∀𝑥 . (𝐿 −∗ 𝐺 ′).
(d) 𝑈 = 𝐻𝐶 . Continue with Γ;𝐻𝐶 ,Δ ` 𝐺 ′.

3. 𝐺 = wp 𝑒 {𝑣 . 𝐿}:

(a) If 𝑒 is a value𝑤 , continue with Γ;Δ ` |V> >𝐿[𝑤/𝑣].
(b) Else, �nd a𝐾 and 𝑒 ′with 𝑒 = 𝐾 [𝑒 ′], and quanti�ed speci�cation∀®𝑥 . {𝐿1} 𝑒 ′ {𝑤. 𝐿2} .

Continue with Γ;Δ ` ‖ |V> ?E ‖ ∃®𝑥 . 𝐿1 ∗
(
∀𝑤. 𝐿2 −∗ |V?E >wp 𝐾 [𝑤] {𝑣 . 𝐿}

)
.

4. 𝐺 = |VE1 E2 𝐿: We consider the following cases:

(a) If the modality |VE1 E2
is not introducable, i.e., E1 ≠ E2, continue with goal Γ;Δ `

‖ |VE1 ?E3 ‖ ∃ . 𝜒 ∗ |V?E3 E2 𝐿. As mentioned in §2.4.3, this case is responsible for

closing invariants. The remaining cases assume that |VE1 E2
is introducable.

(b) 𝐿 = p𝜙q: Prove the pure goal 𝜙 to �nish.

(c) 𝐿 = wp 𝑒 {𝑣 . 𝐿′}: Remove the fancy update, and continue with Γ;Δ`wp 𝑒 {𝑣 . 𝐿′}.
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(d) In all other cases, continue with Γ;Δ ` ‖ |VE1 ?E3 ‖ ∃ . 𝐿 ∗ |V?E3 E2 True. This will
be one of the �nal steps of a successful proof: once 𝐿 has been established with

Item 5, we will reach Item (4-b) and terminate.

5. 𝐺 = ‖ |VE1 E2 ‖ ∃®𝑥 . 𝐿 ∗𝐺 ′: Case analysis on 𝐿:

(a) 𝐿 = p𝜙q: Check that |VE1 E2
is introducable, and try to solve 𝜙 [®𝑦/®𝑥] for fresh Coq

evars ®𝑦. Continue with Γ;Δ ` 𝐺 ′[®𝑦/®𝑥].
(b) 𝐿 = 𝐿1 ∗ 𝐿2: Set ®𝑦1 = FV(𝐿1) and ®𝑦2 = ®𝑥 \ ®𝑦1, then continue with goal:

Γ;Δ ` ‖ |VE1 ?E3 ‖ ∃®𝑦1 . 𝐿1 ∗ ‖ |V?E3 E2 ‖ ∃®𝑦2 . 𝐿2 ∗𝐺 .
(c) 𝐿 = ∃𝑦. 𝐿′: Continue with Γ;Δ` ‖ |VE1 E2 ‖ ∃𝑦, ®𝑥 . 𝐿′ ∗𝐺 .
(d) 𝐿 = 𝐴: Find the �rst 𝐻 ∈ Δ with side condition 𝐿′ and residue 𝑈 for which

𝐻 ∗ [®𝑦;𝐿′] �
[
|VE3 E2 ]

®𝑥 ;𝐴 ∗ [𝑈 ]. Then continue with new goal:

Γ;Δ \ 𝐻 ` ‖ |VE1 E3 ‖ ∃®𝑦. 𝐿′ ∗ (∀®𝑥 . 𝑈 −∗ 𝐺).

In the above, we say that |VE1 E2
is introducable, if E2 can be uni�ed with E1. Note that

Item (3-b) is sym-ex-fupd-exist (§2.3) and Item (5-d) is biabd-hint-apply (§2.4). We

have omitted steps in the introduction of magic wands to merge hypotheses and to detect

incompatibilities. For example, if we introduce locked 𝛾 and already have a locked 𝛾 in

our context, we obtain False by locked-uniqe. We have also omitted the bookkeeping

required to deal with Iris’s later modality (⊲).

2.5.3 Extending Diaframe with Disjunctions
The Diaframe grammar does not contain disjunctions. This is intended, as proving

disjunctions in linear logics is challenging. Consider 𝑃 ∗ 𝑄 ` (𝑃 ∨ 𝑄) ∗ 𝑃 . It is crucial
to prove the disjunction using 𝑄 , since otherwise we are left with the unprovable goal

𝑄 ` 𝑃 . But if we look at just the disjunction, there is no way to know this in advance.

To o�er automation for some goals with disjunctions, we provide an extension of

Diaframe. When introducing a disjunction Δ ` (𝑈1 ∨𝑈2) −∗ 𝐺 into the context, continue

with goals Δ ` 𝑈1 −∗ 𝐺 and Δ ` 𝑈2 −∗ 𝐺 by disjunction elimination. When proving

Γ;Δ ` ‖ |VE1 E2 ‖ ∃®𝑥 . (p𝜙q ∗ 𝐿1 ∨ 𝐿2) ∗ 𝐺 (and symmetrically), check if we can prove

¬𝜙 , and if so, continue with the simpler goal Γ;Δ ` ‖ |VE1 E2 ‖ ∃®𝑥 . 𝐿2 ∗𝐺 . This makes

the pure goal 𝜙 act as a “guard” on the disjunct.

When a disjunction cannot be handled this way, the proof search strategy will simply

stop. It is then up to the user to choose a disjunct, and continue the proof (see the proof of

drop in §2.2.2 for an example). To automatically prove more involved examples, Diaframe

allow users to opt-in on the use of backtracking to choose a disjunct.

2.6 Implementation and Evaluation

Diaframe is implemented as a library of ca. 15.000 lines of Coq code, built on top of Iris.

We use Coq’s type class mechanism (Sozeau and Oury, 2008) extensively to make the

implementation parametric in (among others) the base proof hints. The recursive hint

search strategy (§2.4.3) and the core proof search strategy (§2.5.2) are implemented as an

Ltac (Delahaye, 2000) tactic called iStepsS. This tactic can be used to prove speci�cations
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entirely, and as part of interactive proofs in the Iris Proof Mode (Krebbers et al., 2017a,

2018). Diaframe comes equipped with 5 ghost-state libraries with bi-abduction hints, to

help verify concurrent programs.

To evaluate Diaframe and its implementation, we have veri�ed 24 examples with

di�erent levels of complexity. These examples include all the examples used to evaluate

Caper (Dinsdale-Young et al., 2017), Starling (Windsor et al., 2017) and Voila (Wolf et al.,

2021), and 5 additional, closely related examples. Our examples do not always correspond

line-for-line to the examples from other tools, since the programming languages are

di�erent, but the required concurrency reasoning is similar. These examples and their

statistics are shown in Figure 2.6. This table also includes statistics for manual Iris proofs

(if they are available in Iris’s Coq distribution).

From this benchmark, we conclude that the use of Diaframe signi�cantly reduces

the proof work when using Iris to formally verify programs. Diaframe is competitive

with automatic non-foundational tools such as Starling, Voila and Caper, while being

foundational—generating closed proofs in the Coq proof assistant. The following caveats

apply: (a) Starlings constraint-based approach reduces the proof work for some examples,

e.g., Peterson’s algorithm. For most examples, Diaframe requires less proof work, and is

more expressive. (b) Caper outperforms Diaframe with respect to proof work and number

of annotations. However, veri�cation with Diaframe is modular, meaning it is easier to

verify clients. (c) Voila focuses on TaDA-style logically-atomic speci�cations (da Rocha

Pinto et al., 2014), which are not supported by Diaframe. Because of this focus, Voila

requires more proof work than Diaframe, also for the regular speci�cations used in this

comparison.

We summarize some aggregated data from Figure 2.6. Diaframe can verify 7 of the

examples without any help from the user. Averaged over all examples, we require about

0.4 line of manual proof per line of implementation (321 lines of proof for 823 lines of

implementation). The highest proof work is in the veri�cation of the Michael-Scott queue

(Michael and Scott, 1996), requiring 46 lines of proof for an implementation of 37 lines.

All but two examples can be veri�ed in under two minutes on our 3960X Threadripper

(averaged over 10 runs). The two exceptions are slow mainly because their invariants

contain an 𝑛-fold disjunction, with 𝑛 relatively high (≥ 10).

Hints and proof search customization. Diaframe has access to 30 bi-abduction

hints, available in our 5 ghost-state libraries. In Figure 2.6, user-provided hints and their

required lemmas count as proof search customization. 8 user-provided bi-abduction hints

were necessary to verify examples with recursive de�nitions, as Diaframe does not have

native support for such de�nitions as of yet. Other ways to customize the proof search

are: strengthening the pure solver, and instructing Diaframe to merge some hypotheses.

Merging hypotheses may be necessary to �nd relevant equalities or contradictions. The

process of designing a user-provided hint is generally as follows. First, run Diaframe until

it gets stuck. Next, inspect the available hypotheses and goal, looking for a hypothesis

that indicates a way to prove the left-most atom in the goal. Finally, create and prove

this new hint, and repeat.

Ghost-state libraries. Diaframe provides 5 libraries with bi-abduction hints for ghost-

state resources. These libraries are concerned with (a) allocating Iris invariants, (b) the

token resources from §2.2.2, (c) ticket-like resources, (d) Iris’s own connective for general
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name impl annot custom

hints

used

time total

iris manual

total

starling

total

caper

total

voila

total

arc (Rust Language, 2021) 18 28/4 3 5 0:10 62/7 72/16 70/1

bag stack (Treiber, 1986) 29 45/2 34 7(3) 0:17 117/36 170/92 70/0 205/36

barrier 58 100/31 5 14 13:22 200/38 102/0

barrier client 58 98/38 6 6 0:50 175/44 189/0

bounded counter 20 41/7 4 0:11 73/7 50/2 79/9

cas counter 14 31 2 0:08 56/0 95/39 40/0 68/9

cas counter client 16 9 4 0:06 36/0 94/0 267/36

clh lock (Magnusson et al., 1994) 30 48 3 7 0:22 94/3 134/15

fork join 14 29 2 0:08 57/0 38/0 51/7

fork join client 13 9 0:04 30/0 70/0 124/20

inc dec 23 44 6 0:31 78/0 54/0 99/12

lclist (Vafeiadis, 2008; Calcagno et al., 2007) 28 34/5 13 2(2) 0:27 86/18 197/134

lclist extra 119 53 2 3(2) 1:31 182/2

mcs lock (Mellor-Crummey and Scott, 1991) 54 73/7 4 9 1:11 147/11

msc queue (Michael and Scott, 1996) 37 56/5 41 13(3) 1:42 168/46

peterson (Peterson, 1981) 46 102/28 7 7:51 166/28 94/5

queue 42 58/5 41 12(3) 1:17 170/46 99/0

rwlock duolock (Courtois et al., 1971) 45 50/10 7 0:21 109/10

rwlock lockless faa 27 36/1 8 0:20 74/1 68/1

rwlock ticket bounded 40 68/10 2 13 0:54 124/12 109/14

rwlock ticket unbounded 38 62/5 8 0:21 116/5

spin lock 13 28 3 0:06 59/0 93/30 76/22 39/0 65/7

ticket lock 23 49/6 5 0:23 90/6 168/78 66/11 59/0 90/12

ticket lock client 18 11 1 0:06 39/0 79/0 87/11

total 823 1162/164 154 38(8) 32:30 2518/321 526/239 748/217 1121/4 1135/159

Figure 2.6: Data on veri�ed examples. Rows correspond to �les in the supplementary material (Mulder et al., 2022a). Columns show

number of lines of implementation of the program, annotation (speci�cations + invariants) and proof search customization. The

format 𝑛/𝑚 stands for 𝑛 lines in total, of which𝑚 lines consist of proof work. Proof search customization (i.e., user-provided hints)

is always counted as proof work. In the hints column, notation ℎ(𝑐) stands for ℎ distinct hints used for the proof, 𝑐 of which were

custom/user-provided. The time column displays the average veri�cation time in minutes:seconds. The column total also includes all

remaining Coq boilerplate, like Import statements.
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ghost-state resources, (e) writing integers as the di�erence between two naturals that can

only increase. All of these libraries are used by at least two of the examples in Figure 2.6.

Performance for failing veri�cations. One rarely gets the veri�cation of these ex-

amples right in one go. It is therefore important to consider the performance of Diaframe

when veri�cation fails. In our artifact (Mulder et al., 2022a)one can �nd several examples

that intentionally fail, obtained by changing the code, postcondition or omitting induction

hypotheses. In all these cases, failing times were lower than the �nal veri�cation time in

Figure 2.6.

Di�erences between the examples across tools. We verify bounded counter for a

parametric bound, whereas Caper and Voila �x the bound to 3. Starling veri�es a static

version of Peterson’s algorithm and a bounded reader-writers lock, whereas we verify a

heap-allocated version.

Manual Iris proofs. When comparing with manual Iris proofs, we see that Diaframe

takes care of most, if not all, of the proof work. Relatively easy examples like spin lock

and cas counter are veri�ed without manual proof work. For harder examples like

ticket lock and bag stack, Diaframe saves more than 50 lines of proof work.

Starling. Starling (Windsor et al., 2017) functions as a proof outline checker: the user

has to supply the intermediate program states after each atomic step, and Starling will

then verify whether this transition is valid. Starling is a standalone tool written in F#,

and can use di�erent backends as trusted oracles—the Z3 SMT solver (de Moura and

Bjørner, 2008), or GRASShopper for heap-based reasoning (Piskac et al., 2014b). Its logic

is based on the Views framework (Dinsdale-Young et al., 2013), which enables Starling

to express various concurrent reasoning patterns into one core proof rule. This core

proof rule produces a �nite set of veri�cation conditions for each atomic step, which can

then be sent to the trusted oracle. This e�cient mapping of atomic steps to veri�cation

conditions, together with the ease of de�ning custom concurrent reasoning patterns,

gives Starlings proof automation its power. The downside of the relatively simple logic

of Starling is reduced expressivity—it cannot prove functional correctness of e.g., the

bag stack. There is also no support for verifying method calls, preventing veri�cation

of clients.

Comparing our statistics to those of Starling, one can see that we usually require

fewer lines of proof work. This is not surprising, as Starling is a proof outline checker, and

thus requires a pre- and postcondition for every atomic operation. A notable exception

to the smaller proof obligation is Peterson’s algorithm. Stating and proving the invariant

for this algorithm in Iris turned out to be quite di�cult, and it seems Starling’s constraint-

based approach is a better �t here. In Figure 2.6, we counted postconditions of atomic

operation that are not the last operation as proof work, as well as non-comment lines in

program-speci�c external �les.

Caper. Caper (Dinsdale-Young et al., 2017) is written in Haskell, and uses the Z3 SMT

solver (de Moura and Bjørner, 2008) as a trusted oracle. The target programs are written

in a custom language, and the proof system is based on the CAP logic (Dinsdale-Young

et al., 2010). This logic contains shared regions (similar to Iris’s invariants) and guard

algebras (similar to Iris’s ghost state/logical resources) to accommodate reasoning about
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�ne-grained concurrency. The cornerstones of Caper’s proof automation are backtracking

and abduction. These allow Caper to infer that regions should be opened when verifying

the execution of a statement in a program. A failure to satisfy some precondition is used

as an indication to reattempt the proof with opened regions.

When comparing Diaframe to Caper, we can see that Caper outperforms Diaframe

in terms of proof work and annotation overhead. For one, their notations can give

implementations and speci�cations of functions in one go. Caper’s proof automation is

also simply more powerful—notably, it will ‘blindly’ open regions in the hope they help

proving the goal. Although this makes Caper’s automation more powerful, it also makes

it slow on failing examples as pointed out by Wolf et al. (2021). In these cases, Diaframe’s

automation will simply stop at the point where it cannot make progress, while Caper

will backtrack through all possible options. In the veri�cation of clients, we outperform

Caper because Diaframe’s veri�cation is compositional—unlike Caper, we do not need to

restate and re-verify a library to verify a client.

For Caper, the lines of proof work in Figure 2.6 consist of no-ops inserted in programs

such as assert (cnt = 1 ? true : true). These no-ops are used to force case-splits

in Caper’s proof engine.

Voila. Voila (Wolf et al., 2021) is a proof outline checker for the TaDA logic (da Rocha

Pinto et al., 2014). Voila takes a user-provided proof outline, turns it into a proof candidate,

then veri�es this with Viper (Müller et al., 2016). Like Caper, Voila uses regions and

guard algebras for �ne-grained concurrent reasoning. Some program statements need

additional annotations containing the relevant reasoning steps, like opening regions.

Voila’s automation is a combination of applying syntax-driven rules whenever possible,

asking the user to provide key rules of the proof, and then using a set of heuristics to �ll

in gaps for nearly applicable rules.

In the examples in our benchmark, Diaframe usually requires fewer total lines, and

fewer lines of user guidance than Voila. Again, this is not surprising, since like Starling,

Voila is a proof outline checker. Voila also does not support all the guard algebras that

Caper does. This prevents veri�cation of e.g., the queue. However, Voila is capable of

(and focused at) verifying TaDA-style logically-atomic speci�cations. While Iris supports

these, Diaframe does not. For Voila, the lines of proof work in Figure 2.6 consist of explicit

calls to open/close regions, and explicit uses of atomic speci�cations.

2.7 Related Work

There is a lot of work on non-automated veri�cation (Mansky et al., 2017; Jung et al.,

2020; Kim et al., 2017) in foundational tools (Nanevski et al., 2014; Sergey et al., 2015;

Appel et al., 2014; Cao et al., 2018; Jung et al., 2016; Gu et al., 2019). We focus on related

work in automated veri�cation. Starling (Windsor et al., 2017), Caper (Dinsdale-Young

et al., 2017) and Voila (Wolf et al., 2021) have been covered in §2.6.

Steel. Steel (Swamy et al., 2020; Fromherz et al., 2021) is a language for developing and

verifying concurrent programs in a concurrent separation logic descendant of Iris (Jung

et al., 2016), written in F* (Swamy et al., 2011). Similar to Diaframe, Steel designed a

format to automate the application of certain rules. Their approach uses a notion of Hoare

quintuples, and relies on a combination of SMT solving and AC-matching. Diaframe
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uses weakest preconditions, and avoids reasoning up to commutativity: the order in

preconditions and invariants is relevant. Steel excels in automatically proving pure side

conditions, leveraging F*’s native use of the Z3 SMT solver (de Moura and Bjørner, 2008).

As listed in §2.8, our support for pure side conditions is rather weak, and would bene�t

from stronger pure automation. It is hard to compare Steel’s automation for �ne-grained

concurrency to ours, since Fromherz et al. (2021) only covered a spinlock and a parallel

increment.

Veri�cation in a weak-memory setting. Summers and Müller (2018) presented a

prototype tool which can automatically verify �ne-grained concurrent programs in a

weak memory model. It works by encoding parts of separation logics for weak memory

(Vafeiadis and Narayan, 2013; Doko and Vafeiadis, 2016, 2017) into Viper (Müller et al.,

2016), similar to Voila’s approach (Wolf et al., 2021). It would be interesting to extend

Diaframe with support for weak memory using one of the Iris-based logics for weak

memory (Kaiser et al., 2017; Dang et al., 2020; Mével et al., 2020).

Bedrock. Bedrock (Chlipala, 2011, 2015) is a mostly-automatic foundational tool for

verifying sequential programs in an assembly-like language. Its separation-logic based

automation employs techniques that are somewhat similar to those of Diaframe. It tries to

syntactically match hypotheses and goals, ‘crossing o�’ hypotheses that appear directly

in the goal. More involved reasoning steps, like updating ghost-state, require explicit

annotations, and we expect that this would not give the amount of automation that

Diaframe provides.

Re�nedC. Re�nedC (Sammler et al., 2021) is a recent Iris-based tool for automatic

and foundational veri�cation of C programs. One of the main ingredients of Re�nedC’s

automation is the ‘separation logic programming language’ Lithium, which, like Diaframe,

is based on ideas from linear logic programming. Lithium and Diaframe employ the

same rules for introducing variables and hypotheses, prove separating conjunctions in

a deterministic left-to-right fashion, and do not backtrack once a hint has been used.

Lithium’s grammar is more restricted than Diaframe’s—it does not contain modalities, so

it cannot handle complicated ghost state or Iris’s invariants. It is also targeted speci�cally

at proving Re�nedC’s typing judgments, while we target general Iris weakest precon-

ditions. By encapsulating some concurrency reasoning in typing rules, Re�nedC can

support limited forms of �ne-grained concurrency, like a spin-lock and a one-time barrier.

Re�nedC has stronger automation and simpli�cation procedures for pure goals, focused

at handling complicated sequential programs, which might be valuable for Diaframe in

the future too.

Other non-foundational veri�cation tools. Other automated veri�cation tools are

Verifast (Jacobs et al., 2011; Bošnački et al., 2016), SmallfootRG (Berdine et al., 2006;

Calcagno et al., 2007), and VerCors (Oortwijn et al., 2017). The automation of Verifast is

very fast and requires little help for sequential code, but many annotations for �ne-grained

concurrent code compared to other tools. SmallfootRG is targeted at memory safety,

thus cannot prove full functional correctness like Diaframe. Like Diaframe, Verifast and

Smallfoot use automation by symbolic execution. An important di�erence is the use of

a symbolic heap, which facilitates permission and value queries. We do not have this

option in Iris, so instead of operating on the entire heap at once, we operate on a single

hypothesis at a time. VerCors uses process-algebras in addition to separation logic to
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reason about �ne-grained concurrent programs. This approach does lead to reduced

expressivity, but has been shown to scale to interesting examples (Oortwijn and Huisman,

2019).

Logic programming languages for linear and separation logic. There is much

prior work on linear logic programming (Armelín and Pym, 2001; Harland et al., 1996;

Hodas andMiller, 1991; Cervesato et al., 2000), fromwhich ourwork has drawn inspiration.

Like Diaframe, these works use a goal-directed proof-search procedure, and interpret

connectives as proof-search instructions. They are usually restricted to the (linear)

hereditary Harrop fragment of the logic, but enjoy completeness results on this fragment.

Diaframe poses less restrictions on goals, but is necessarily incomplete. Inspired by

focusing (Andreoli, 1992; Liang and Miller, 2009) Diaframe �rst performs invertible

operations.

Separation logic solvers and bi-abduction. The literature abounds with solvers for

(�rst-order) separation logic (Lee and Park, 2014; Reynolds et al., 2016; Piskac et al., 2014a;

Le et al., 2018; Ta et al., 2018; Chu et al., 2015). These usually focus on a speci�c set

of atoms (e.g., the symbolic heap fragment (Berdine et al., 2004)), or intricate recursive

structures while enjoying completeness results. Diaframe is parametric in the set of

atoms, but not able to handle recursive de�nitions without user-de�ned hints. Calcagno

et al. (2009b) and Brotherston et al. (2017) also use bi-abduction, but with a dual goal:

shape-analysis, i.e., inferring speci�cations for programs. They present recursive rules

and a decision procedure to solve the bi-abduction problem, but in a more con�ned

separation logic.

2.8 Limitations and Future Work

We have introduced Diaframe—the �rst automated and foundational tool for veri�cation

of �ne-grained concurrent programs. As the benchmarks in Figure 2.6 show, Diaframe is

competitive with automatic non-foundational tools, but there are still plenty of directions

for improvements.

A limitation of Diaframe is that it cannot handle goals that do not �t the grammar.

In particular, there is no support for magic wands in invariants. Although these can

be avoided in most cases, some examples remain out of reach—for example, the barrier

veri�ed by Jung et al. (2016). The speci�cation of this barrier is tricky, allowing clients to

weaken and split the resource on which the threads are waiting. The veri�cation of this

barrier features a magic wand inside an invariant, which does not appear to be rewritable

to simpler terms.

Some manual proof work is caused by the lack of support for recursive de�nitions for

resources in Iris. Such resources are ubiquitous when verifying recursive data structures

like stacks and queues. Proof hints for such resources should be automatically generated.

In this chapter, we have focused on automating the separation logic part of the

veri�cation, but for larger examples wewant to improve the automation and simpli�cation

procedures for pure conditions.

When our automation gets stuck on a goal, it can sometimes be unclear why this goal

remains, and what happened before. This occurs most often in programs with multiple
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branches and/or invariants with disjunctions. We leave improving the user interaction in

these cases for future work.

Since we use syntactic uni�cation to drive automation, support for (general) indexing

in an array is poor. Veri�cation of data structures such as ring bu�ers seem like a

challenge. It would be useful to develop appropriate hints for arrays.

The veri�cation time of Diaframe is relatively slow. Although 18 out of 24 examples

verify in under a minute, the barrier example is our slowest, taking 14 minutes. We

think this can still be improved, and wish to investigate this.

Diaframe’s proof search strategy could, in principle, be used whenever goals can

be rewritten into Diaframe’s entailment format. This can be done for logically-atomic

speci�cations, and can also be done for ReLoC’s re�nement judgment (Frumin et al., 2018,

2021b). However, both these types of goals present additional challenges for automatic

veri�cation—one of which is that there are multiple seemingly valid (and syntactically

similar) ways to proceed with a proof. We shall get back to this in Chapter 3.



Chapter 3

Proof Automation for
Linearizability in Separation
Logic

3.1 Introduction

Concurrent algorithms and data structures play an increasingly important role in modern

computers. For e�ciency, such algorithms and data structures often rely on �ne-grained

concurrency—they use low-level operations such as Compare And Swap (CAS) instead of

high-level synchronization primitives such as locks. The “gold standard” of correctness

for such data structures is linearizability (Herlihy and Wing, 1990). An operation on a

concurrent data structure is linearizable if its e�ect appears to take place instantaneously,

and if the e�ects of concurrently running operations always constitute a valid sequential

history. This can be formalized by requiring that somewhere during every operation on

the concurrent data structure, there exists a single atomic step which logically performs

the operation on the data structure. This point is called the linearization point, and

the e�ects of concurrent operations must then match the e�ects of the corresponding

sequential operations, when ordered by linearization point.

Linearizability was originally formulated as a property on program traces by Herlihy

andWing (1990). This formulation is a good �t for automated proofs, as witnessed by fully

automated methods based on shape analysis (Vafeiadis, 2010; Henzinger et al., 2013; Zhu

et al., 2015) and model checking (Burckhardt et al., 2010)—see Dongol and Derrick (2015)

for a detailed survey. However, Dongol and Derrick (2015) classify these methods as not

compositional: they are unable to abstractly capture the behavior of the environment.

Accordingly, there has been an avalanche of research on formulations and proof methods

for linearizability that enable compositional veri�cation: proving linearizability of com-

pound data structures (e.g., a ticket lock) using proofs of linearizability of their individual

components (e.g., a counter). Unfortunately, proof automation for these compositional

approaches to linearizability is still lacking.

45
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Compositional approaches to linearizability. Notable examples of compositional

approaches to linearizability are contextual re�nement (Filipović et al., 2010; Liang and

Feng, 2013; Turon et al., 2013), logical atomicity (da Rocha Pinto et al., 2014; Jung et al.,

2015; Birkedal et al., 2021), and resource morphisms (Nanevski et al., 2019). We focus

on the �rst two: they are both available in the Iris framework for separation logic in

Coq (Jung et al., 2015, 2016; Krebbers et al., 2017a,b; Jung et al., 2018b), and our work in

Chapter 2 provides a starting point for proof automation in Iris.

Linearizability follows from contextual re�nement 𝑒 �ctx 𝑒 ′, where 𝑒 is the �ne-

grained concurrent program, and 𝑒 ′ is a coarse-grained (i.e., lock-based) version of 𝑒 . A

program 𝑒 contextually re�nes 𝑒 ′, if for all well-typed contexts𝐶 , if𝐶 [𝑒] terminates with

value 𝑣 , then there exists an execution so that 𝐶 [𝑒 ′] also terminates with value 𝑣 . The

quanti�cation over all contexts 𝐶 makes re�nements compositional, but also di�cult to

prove. Turon et al. (2013) pioneered an approach based on separation logic that made it

feasible to prove re�nements of sophisticated concurrent algorithms on paper. Krebbers

et al. (2017a) incorporated this work into Iris to enable interactive proofs using Coq.

The state of the art for re�nement proofs in Iris is the ReLoC framework (Frumin et al.,

2018, 2021b), which has been applied to sophisticated examples such as the Michael-Scott

queue (Vindum and Birkedal, 2021) and a queue from Meta’s Folly library (Vindum et al.,

2022).

Linearizability also follows from a logically atomic triple 〈𝑃〉 𝑒 〈𝑄〉. Intuitively, such
a triple gives a speci�cation for the linearization point of the program 𝑒 . Even though

𝑒 itself may not be physically atomic, 𝑒 will atomically update the resources in 𝑃 to

the resources in 𝑄 , somewhere during its execution. Logically atomic triples can be

composed inside the logic, i.e., the triple for one data structure (say, a counter) can be

used to verify to another (say, a ticket lock). Logical atomicity was pioneered in the

TaDA logic by da Rocha Pinto et al. (2014), and was embedded in Iris and extended

with support for higher-order programs and programs with “helping” (delegation of

the linearization point to another thread) by Jung et al. (2015). Logical atomicity in

Iris has been used to verify challenging examples such as the Herlihy-Wing queue and

RDCSS (Jung et al., 2020), and by engineers at Meta to verify a high-performance queue

(Carbonneaux et al., 2022). GoJournal (Chajed et al., 2021) uses logical atomicity in Iris to

verify a concurrent, crash-safe journaling system of signi�cant size (∼1.300 lines of Go
code, ∼25.000 lines of Coq proofs). Compositionality is crucial in GoJournal’s veri�cation:

the implementation consists of four layers, and the veri�cation of each layer uses the

logically atomic speci�cation of the previous layer.

State of the art on proving linearizability compositionally. The state of the art

for compositional approaches to linearizability is to construct proofs interactively. Re-

�nement and logical atomicity proofs in Iris are constructed interactively using the Iris

Proof Mode in Coq (Krebbers et al., 2017a, 2018). Similarly, linearizability proofs using

the resource morphism approach (Nanevski et al., 2019) are constructed interactively

using the FCSL framework in Coq (Sergey et al., 2015). Both Iris and FCSL use a tactic-

based style. That is, one writes down the program and speci�cation (and all auxiliary

de�nitions) and then carries out the proof using a sequence of tactics, where each tactic

decomposes the proof obligation into simpler proof obligations.

An alternative proof style is used in the Voila tool (Wolf et al., 2021)—a proof outline

checker for logical atomicity in TaDA (da Rocha Pinto et al., 2014) (a logic that preceded
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and in�uenced Iris). Contrary to the tactic-based style, Voila provides a proof style

where the program is annotated with assertions and pragmas to guide the proof search.

Being a proof outline checker, Voila’s goal is not full automation—it requires the user

to provide (with pragmas) key steps of the proof. This signi�cantly reduces the proof

burden compared to interactive proofs in tactic-based tools such as Iris and FCSL, but

still requires annotations for all lines of code that touch shared state.

This discussion indicates that proving linearizability is currently a laborious endeavor.

This is also emphasized by Carbonneaux et al. (2022) (who veri�ed a queue for Meta

using Iris):

We were also surprised that the most important lemmas took only a

couple lines to prove while using the invariants and writing the code proofs

required hundreds of rather straightforward lines. While Iris’ proof mode

made using CSL [Concurrent Separation Logic] easy, this observation seems

to indicate that there remains untapped potential to increase the reasoning

density.

This chapter presents a step forward to obtain this untapped potential. We present

Diaframe 2.0—a proof automation extension for Iris, which we have successfully used to

automate (parts of) contextual re�nement and logical atomicity proofs. Before describing

the key ideas and architecture of Diaframe 2.0, let us �rst outline our design goals.

Design goal #1: Fully automated proofs for ‘simple’ programs. Our goal is to

prove linearizability of ‘simple’ programs fully automatically. That is, once the program

and speci�cation are written down, the tool should �nd a proof without user assistance.

This brings the tooling for compositional approaches closer to the tooling for non-

compositional (trace-based) approaches.

Design goal #2: Assistance using interactive proofs for ‘complex’ programs. Al-

though we aim for full proof automation of ‘simple’ programs, this should not come at

the cost of expressivity. We also want to verify arbitrarily ‘complex’ programs and give

them strong speci�cations. Providing full automation that works in every situation is

impossible—due to Iris’s expressive logic, any proof automation is inherently incomplete

(in fact, propositional separation logic is already undecidable (Brotherston and Kanovich,

2014)). For more complex examples, the proof automation should be predictable and

behave in an acceptable manner when it encounters a goal it cannot solve. This means

the proof automation should be able to make partial progress (instead of only being able

to fully solve a goal or fail), so that the user can assist if needed.

Design goal #3: Declarative and modular de�nitions of proof automation. Log-

ics for re�nement and logical atomicity are very di�erent—they use di�erent judgments

with bespoke proof rules. To avoid having to reinvent the wheel for both logics, we would

like to write our proof automation in a way that is declarative (i.e., that abstracts over

low-level aspects) and modular (i.e., that can be composed out of di�erent ‘modules’).

Despite the di�erences between both logics, both are based on separation logic. This

means that the proof automation for both logics needs to deal with the fact that resources

are substructural (can be used at most once), and should share features provided by Iris

such as modalities, impredicative invariants and custom ghost state. It is thus desirable

to have a shared ‘core’ module. We want to have an integration between (the automation
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for) both logics so that logically atomic triples (which provide internal compositionality)

can be used to prove re�nements (which provide external compositionality). This should

be achievable by combining the two modules. During the development, we wish to be

able to quickly experiment with di�erent rules and priorities. This should be possible

by changing the relevant module locally instead of the proof automation globally. In

the future, we want to support new features of Iris (such as prophecy variables (Jung

et al., 2020) and later credits (Spies et al., 2022)) or new speci�cation styles in Iris (such

as termination-preserving re�nement (Gäher et al., 2022) and the security condition

non-interference (Gregersen et al., 2021; Frumin et al., 2021a)). Ideally, this should also be

possible by adding additional modules instead of having to change the proof automation

globally.

Design goal #4: Foundational proofs in a proof assistant. To ensure that our proof

automation is as trustworthy as possible, we want it to be foundational (Appel, 2001).

This means that proofs are machine-checked against the operational semantics of the

programming language. To achieve this, the proof rules of the logic need to be proved

sound (which has already been done for Iris) and our automation needs to be proved

sound against the Iris proof rules (which is one of the contributions of this chapter).

Key ideas for achieving the design goals. Our desired proof automation should not

only be able to fully automatically construct simple proofs of linearizability (Design

goal #1), it should allow user assistance with interactive proofs (Design goal #2), and

be de�ned declaratively (Design goal #3). We list the key design choices that we hold

responsible for achieving this combination of constraints. Our �nal design goal is to

produce foundational proofs (Design goal #4), but we believe our key ideas could be

useful even in a non-foundational setting (i.e., outside of a proof assistant).

• Minimize backtracking. To ensure the proof automation cooperates well with

interactive proofs, we avoid the use of backtracking in our proof automation

whenever possible. In many cases, it is not apparent that backtracking can be

avoided—but it can be avoided more frequently than one might expect. By avoiding

backtracking, it becomes much easier to alternate between proof automation and

interactive proof tactics: the proof automation can simply be ‘run’ until it gets

stuck, at which point the user can use a tactic (or other means) to direct the proof.

• Use program and logical state to select proof rules. While we want to minimize

backtracking, multiple proof rules are often applicable during the veri�cation of

a program. To select the correct proof rule, the proof automation also inspects

the logical state of the proof. This gives Diaframe 2.0 an edge on other proof

automation tools, where such information is not available or fully leveraged. For

example, this allows Diaframe 2.0 to automatically perform some key steps for

dealing with shared state in logical atomicity proofs, while they must be provided

explicitly in proof outlines for Voila.

• Represent proof rules as instances of a general format, and leverage near-applicability.

To implement our proof automation in a declarative and modular way, we identify

general formats to capture proof rules. These formats describe the ‘current’ and

‘new’ veri�cation goal, and optionally, a piece of required logical state. To extend the
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Veri�cation goal

|= 𝑒1 - 𝑒2 : 𝐴
〈𝑃〉 𝑒 〈𝑄〉

⊲𝐺,�𝐺, . . .

Diaframe 1.0

ghost state and

invariant

reasoning module

Qed

re�nement module (§3.2)

logical atomicity module (§3.3)

modality module (§3.2)

implemented with abduction

and transformer hints (§ 3.4)

Figure 3.1: Overview of the architecture of Diaframe 2.0.

proof search strategy with additional proof rules, one simply shows that they can be

written as instances of the general formats. Modules for our proof automation are

then just collections of rules, executed by the proof automation strategy. We also

add �exibility for when the logical state or current goal nearly matches a rule—for

example, when the required logical state can be found beneath a connective of the

logic. In such cases, the rule is still applied automatically, but the automation will

�rst deal with the connective. This keeps the modules of our proof automation

declarative and concise, while becoming applicable in more situations.

Implementation of Diaframe 2.0. The implementation of Diaframe 2.0 is guided by

the design goals and choices described above. An overview of Diaframe 2.0’s architecture

is shown in Figure 3.1. The key ingredients are the proof strategies underpinning the

re�nement and logical atomicity modules. To realize these strategies, we start with the

original proof rules of ReLoC and logically atomic triples in Iris, and design derived rules

whose application is directed by the program and logical state. These derived rules are

proved sound in Coq (Design goal #4), and make up our proof search strategy. To ensure

good integration with interactive proofs (Design goal #2) and as per our design choices,

our strategies make minimal use of backtracking. Backtracking is sometimes needed to

�nd the linearization point, but our strategies are otherwise deterministic. Backtracking

can be disabled altogether, allowing the user to intervene at key steps in the proof.

Proof automation for linearizability in Iris critically relies on dealing with the corner-

stones of Iris’s concurrent separation logic: invariants and ghost resources. For these, we

build upon our earlier work Diaframe, as presented in Chapter 2. Diaframe provides proof

automation for the veri�cation of �ne-grained concurrent programs, but is restricted

to Hoare triples for functional correctness—and thus does not support linearizability.

However, we reuse Diaframe’s key innovation: its ability to automatically reason with

invariants and ghost resources. In accordance with Design goal #3, this is a separate

proof automation module used by both the re�nement and logical atomicity proof search

strategies.

To express the proof search strategies for contextual re�nement and logical atomicity

in a declarative manner (Design goal #3), we identify two general formats for rules in

these strategies. Abduction hints are used to replace a program speci�cation goal with a

successive goal. One can specify whether this must be done unconditionally, only when

a certain hypothesis is spotted, or just as a last resort. A simple collection of abduction
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hints can describe the original Diaframe strategy for Hoare triples (so Diaframe 2.0

is backwards compatible w.r.t. Diaframe). Transformer hints apply to goals where we

need to reason about the entire context. Simple instances of transformer hints are the

introduction rules for Iris’s various modalities, such as the later (⊲) and persistence (�)

modality. The combination of abduction and transformer hints can express a crucial

proof rule in the veri�cation of logically atomic triples. Additionally, they allow us to

apply (Löb) induction automatically (which was impossible in Diaframe).

Following ideas from Gonthier et al. (2011), Spitters and Weegen (2011) and Krebbers

et al. (2017a), we represent these hints using type classes in Coq (Sozeau and Oury, 2008).

The modules for our strategies for contextual re�nement and logical atomicity are given

as collections of type class instances. Diaframe 2.0’s proof automation is implemented as

an Ltac tactic (Delahaye, 2000), that uses type class search to select an applicable hint

(i.e., a rule in the strategy) for a given goal. Type class search is also used to close o�

our rules under the connectives of separation logic, thus achieving our third key idea of

near-applicability. Coq requires us to prove soundness of each rule represented as a type

class instance, thus achieving foundational proofs (Design goal #4). Aside from enabling

declarative de�nitions of proof search strategies (Design goal #3), the use of type classes

is more robust compared to implementing the strategies directly as an Ltac tactic. Type

class instances are strongly typed, so many errors show up during the implementation of

the strategy as hints, instead of during the execution of the proof strategy.

Contributions and outline. Our contributions are as follows:

• In §3.2 we describe our proof automation strategy for verifying contextual re�ne-

ment in ReLoC.

• In §3.3 we describe our proof automation strategy for verifying logically atomic

triples in Iris.

• In §3.4 we describe the extensible proof automation strategy that underpins Dia-

frame 2.0. This strategy is parametric in the program speci�cation style through

the use of three kinds of hints—for abduction (new), transformer (new), and bi-

abduction (from Diaframe). The proof automation strategies for our �rst two

contributions are encoded in Diaframe 2.0.

• In §3.5 we evaluate our proof automation on existing and new benchmarks. We

compare to existing proofs in Voila (Wolf et al., 2021), showing an average proof

size reduction by a factor 4, while adding foundational guarantees (§3.5.1). We

compare to existing interactive proofs of RDCSS and the elimination stack in Iris,

showing an average proof size reduction by a factor 4 (§3.5.2). Our new result

is a proof of logical atomicity for the Michael-Scott queue (Michael and Scott,

1996) (§3.5.3). For re�nement, we compare to existing interactive proofs in ReLoC,

showing an average proof size reduction by a factor 7 (§3.5.4).

• All of our results have been implemented and veri�ed using the Coq proof assistant.

The Coq sources can be found in Mulder and Krebbers (2023a).

We conclude this chapter with related work (§3.6) and future work (§3.7).
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Definition fg incrementer : val :=1

𝜆: <>,2

let: "l" := ref #1 in3

(rec: "f" <> :=4

let: "n" := ! "l" in5

if: CAS "l" "n" ("n" + #1) then6

"n"7

else8

"f" #()).9

Definition cg incrementer : val :=10

𝜆: <>,11

let: "l" := ref #1 in12

let: "lk" := newlock #() in13

(𝜆: <>,14

acquire "lk";;15

let: "n" := ! "l" in16

"l" ← "n" + #1 ;;17

release "lk";;18

"n").19

Lemma fg cg incrementer refinement :20

` REL fg incrementer << cg incrementer : () → () → lrel int.21

Proof.22

iStepsS.23

iAssert (|={>}=> inv (nroot.@"incr")24

(∃ (n : nat), x ↦→ #n ∗ x0 ↦→𝑠 #n ∗ is locked r x1 false))%I25

with "[-]" as ">#Hinv"; first iStepsS.26

iSmash.27

Qed.28

Figure 3.2: Veri�cation of a re�nement for a �ne-grained concurrent incrementer in

Diaframe 2.0. Some variable names in the proof are (unfortunately) autogenerated: x

stands for the location of the �ne-grained incrementer, x0 for the location of the coarse-

grained incrementer, and x1 for the lock of the coarse-grained incrementer.

3.2 Proof Automation for Contextual Re�nement

This section introduces the main ideas for automating contextual re�nement proofs in the

Iris-based logic ReLoC (Frumin et al., 2018, 2021b). We start with an example veri�cation

(§ 3.2.1), providing intuition for ReLoC. After providing some formal background for

ReLoC’s proof rules (§3.2.2), we describe our proof automation strategy (§3.2.3).

3.2.1 Contextual Re�nement of an Incrementer

Contextual re�nement speci�es the behavior of one program in terms of another, usually

simpler, program. For linearizability, we take a coarse-grained version as the simpler

program, i.e., a version that uses a lock to guard access to shared resources. Filipović

et al. (2010) shows that such re�nements imply the classical de�nition of linearizability

based on traces. Consider the example in Figure 3.2, a slightly modi�ed version of

the example presented in the �rst ReLoC paper (Frumin et al., 2018). We consider two

implementations of an “incrementer”: fg incrementer and cg incrementer. Whenever

either such an incrementer is called with the unit value, it returns a closure. Whenever

this returned closure is called with the unit value, it returns an integer indicating the

number of times the closure has been called in total, across all threads.

Where the �ne-grained version fg incrementer uses a CAS-loop (Compare And Swap)

to deal with concurrent calls to the closure, the coarse-grained version cg incrementer uses

a lock. Intuitively, both versions “have the same behavior”—although they use di�erent
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methods, both programs guarantee a consistent tally of calls to the closure. We wish

to prove a contextual re�nement fg incrementer �ctx cg incrementer : () → () → Z
that expresses that any behavior of fg incrementer is a behavior of cg incrementer. More

precisely, a contextual re�nement 𝑒1 �ctx 𝑒2 : 𝐴 expresses that for all contexts 𝐶 that

respect the type 𝐴 of 𝑒1 and 𝑒2, if 𝐶 [𝑒1] terminates with value 𝑧, then there exists an

execution sequence such that 𝐶 [𝑒2] also terminates with value 𝑧.

It is well known that it is di�cult to prove such contextual re�nements, since they

quantify over all contexts 𝐶 . A common way to make these proofs tractable, is by

introducing a notion of logical re�nement, which implies contextual re�nement, but is

easier to prove (Pitts, 2005). There exist many approaches to de�ne a notion of logical

re�nement, but in this chapter we focus on approaches based on separation logic as

pioneered in the work by Dreyer et al. (2010) and Turon et al. (2013). Approaches based

on separation logic enable the use of resource and ownership reasoning and are thereby

well-suited for programs that use mutable state and concurrency. A state-of-the-art

separation logic for re�nements based on this idea is ReLoC (Frumin et al., 2018, 2021b).

ReLoC is embedded in Iris and comes with a judgment ( |= 𝑒1 - 𝑒2 : 𝐴) for logical
re�nements.

ReLoC’s soundness theorem states that to prove the contextual re�nement 𝑒1 �ctx 𝑒2 :
𝐴, it su�ces to prove a (closed) Iris entailment (` |= 𝑒1 - 𝑒2 : 𝐴). Here, |= 𝑒1 - 𝑒2 : 𝐴 is a

proposition in separation logic, which allows us to write re�nements that are conditional

on mutable state. For example, we can prove that ℓ𝑙 ↦→ 𝑧 ∗ ℓ𝑟 ↦→s 𝑧 ` |= ! ℓ𝑙 - ! ℓ𝑟 : Z, i.e.,
a load of ℓ𝑙 contextually re�nes a load of ℓ𝑟 , if both locations are valid pointers and point

to the same value 𝑧. The maps-to connectives ℓ𝑙 ↦→ 𝑧 and ℓ𝑟 ↦→𝑠 𝑧 represent the right to

read and write to a location ℓ . Since we are reasoning about two programs (and thus, two

heaps), ReLoC uses the subscripted ↦→s (with ‘s’ for speci�cation) to indicate the heap of

the right-hand side execution.

Proofs of ReLoC’s re�nement judgment |= 𝑒1 - 𝑒2 : 𝐴 use symbolic execution to

reduce expressions 𝑒1 and 𝑒2. The execution of 𝑒1 can be thought of as demonic: all

possible behaviors of 𝑒1 need to be considered. The execution of 𝑒2 is angelic—we just

need to �nd one behavior that matches with 𝑒1. In a concurrent setting, this means

𝑒1 needs to account for (possibly uncooperative) other threads, while 𝑒2 can assume

cooperative threads and scheduling.

Veri�cation of the example. Let us now return to the veri�cation of the example in

Figure 3.2. Our top-level goal (line 21) is the following logical re�nement of closures:

` |= fg incrementer - cg incrementer : () → () → Z. (3.1)

The proof consists of 4 phases:

1. Symbolically execute both outer closures. This will create shared mutable state

used by the inner closures.

2. Determine and establish a proper invariant for the shared mutable state.

3. Perform induction to account for the recursive call in fg incrementer.

4. Symbolically execute the inner closures, using the established invariant. This

should allow us to conclude the re�nement proof.
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These phases are representative for proofs of logical re�nements. For this example,

Diaframe 2.0 can automatically deal with Proof Phase 1, Proof Phase 3 and Proof Phase 4.

Automatically determining proper invariants is very di�cult, so we leave Proof Phase 2

up to the user (line 24–26).

As shown in Figure 3.2, the Diaframe 2.0 proof takes 5 lines. The user’s main proof

burden is writing down the invariant ∃𝑛. ℓ𝑙 ↦→ 𝑛 ∗ ℓ𝑟 ↦→ 𝑛 ∗ isLock(𝑣, false) N , i.e., Proof
Phase 2. (In Coq, we write inv N R for 𝑅

N
, and is locked r for isLock.) Iris’s invariant

assertion 𝑅
N
states that there is a (shared) invariant with name N , governing resources

satisfying Iris assertion 𝑅. Since 𝑅 can be shared, accessing the resources in 𝑅 must

come at a price. They can only be accessed temporarily, during the execution of a single

atomic expression (e.g., a load, store, or CAS) on the left-hand of the re�nement. After

this expression, the invariant must be closed, i.e., one must show that assertion 𝑅 still

holds. Since execution of the right-hand side is angelic, we can execute the right-hand

side multiple steps while an invariant is opened.

Our proof proceeds as follows. We open the invariant to symbolically execute the

load on the left-hand side. This does not change the stored value, so we can immediately

close the invariant. We now reach the CAS on the left. We open the invariant again, and

distinguish two cases. If the CAS succeeds, we symbolically execute the entire right-hand

side, which signi�es the linearization point. The invariant guarantees that the right-hand

side expression returns 𝑛 as desired. If the CAS fails, we close the invariant and use the

induction hypothesis to �nish the proof.

3.2.2 Background: Formal Rules for Contextual Re�nement

To put the proof on a formal footing, we introduce some of Iris’s and ReLoC’s (existing)

proof rules. An overview can be found in Figure 3.3. We go through the phases of the

proof, introducing relevant concepts (such as the � modality, invariant reasoning, and

Löb induction) when necessary.

Proof Phase 1: Symbolic execution of outer closures and the�modality. Recall-

ing our initial proof obligation ` |= fg incrementer - cg incrementer : () → () → Z,
we can start our proof by using refines-closure. This rule is applicable for any proof

context Δ, where Δ stands for a list of assertions 𝑃1, . . . , 𝑃𝑛 . We denote Δ ` 𝑄 for

𝑃1 ∗ . . . ∗ 𝑃𝑛 ` 𝑄 .
Let us consider the premise of refines-closure: we need to prove ` � ( |= 𝑣1 () -

𝑣2 () : 𝐴). This mentions Iris’s persistence modality �—the new proof obligation can be

read as “it is persistently true that 𝑣1 () logically re�nes 𝑣2 () at type 𝐴”. A proof of �𝐺

implies that 𝐺 is duplicable, and can thus be used more than once—this is not a given

in substructural logics. To see why this modality is necessary, note that clients may use

the closure any number of times (and concurrently). Since the two closures have not

introduced any state (and the proof context Δ is thus empty), we can apply iris-�-intro,

introducing the � modality, and continue symbolic execution.

We can then use alloc-l, alloc-r and newlock-r to symbolically execute instruc-

tions on both sides. Our proof obligation now looks as follows:

ℓ𝑙 ↦→ 1, ℓ𝑟 ↦→s 1, isLock(𝑣, false) ` |= (rec . . .) - (𝜆 . . .) : () → Z (3.2)
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We obtain two maps-to connectives ℓ𝑙 ↦→ 1 and ℓ𝑟 ↦→s 1 in our proof context. Remember

that these are exclusive resources that can only be owned by one thread, and which

signify the right to read and write to a location ℓ . Similarly, isLock(𝑣, false) is an exclusive

resource that says the lock 𝑣 is unlocked. (This di�ers from the usual way locks in

concurrent separation logic are speci�ed (Dinsdale-Young et al., 2010; Gotsman et al., 2007;

Hobor et al., 2008) due to the angelic nature of right-hand side execution in contextual

re�nements.) In our proof obligation Equation (3.2), the two references and lock are

captured and used by the closures. Moreover, the left-hand closure will perform a CAS on

ℓ𝑙 , meaning that concurrent calls to this closure will all try to write to the same location.

However, only one thread can hold the ℓ𝑙 ↦→ 𝑛 resource, so we need a way to give shared

access to this resource in the logic.

Proof Phase 2: Establish an invariant. In Iris, we can verify concurrent accesses

using an invariant 𝑅 . At any point during the veri�cation, a resource 𝑅 can be turned

into 𝑅 using inv-alloc. This is called invariant allocation. The assertion 𝑅 is persistent,

so unlike exclusive resources such as ℓ𝑙 ↦→ 1 and ℓ𝑟 ↦→s 1, the invariant assertion can

be kept in the proof context when applying iris-�-intro. In Proof Phase 4, we will see

how to access the invariant resource 𝑅.

We return to our proof obligation Equation (3.2). To continue, we will �rst allocate

an invariant using inv-alloc. We take 𝑅 , ∃𝑛. ℓ𝑙 ↦→ 𝑛 ∗ ℓ𝑟 ↦→s 𝑛 ∗ isLock(𝑣, false), which
expresses that the values stored at ℓ𝑙 and ℓ𝑟 are in sync. After refines-closure and

iris-�-intro, we are left with:

∃𝑛. ℓ𝑙 ↦→ 𝑛 ∗ ℓ𝑟 ↦→s 𝑛 ∗ isLock(𝑣, false)
N ` |= (rec . . .) () - (𝜆 . . .) () : Z. (3.3)

The left-hand side is now a recursive function applied to the unit value (), which will

repeat until the CAS on line 6 succeeds. To �nish the proof, we need to account for the

recursive call.

Proof Phase 3: Löb induction. To verify recursive functions, step-indexed separation

logics such as Iris and ReLoC use a principle called Löb induction. In essence, whenever

we are proving a goal 𝐺 , we are allowed to assume the induction hypothesis ⊲𝐺—the

same goal, but guarded by the later modality (⊲) (Appel et al., 2007; Nakano, 2000). We

are allowed to strip later modalities o� of hypotheses only after we perform a step of

symbolic execution on the left-hand side. This ensures we do actual work before we

apply the induction hypothesis. After doing some of this work, we reach the recursion

point and need to prove 𝐺 again. Since the work stripped o� the later modality of our

induction hypothesis, we can apply the induction hypothesis and �nish the proof.

A selection of Iris’s rules for the ⊲ and � modality and Löb induction are shown in

Figure 3.3b. Rule Löb states that, if we are proving that Δ ` 𝐺 , we can assume that the

induction hypothesis �(Δ −∗ 𝐺) holds, but only later. We can get rid of this later (⊲)

whenever our goal gets pre�xed by a later, as witnessed by ⊲-intro. Iris’s � modality

ensures that the induction hypothesis Δ −∗ 𝐺 can be used more than once. This is re�ected

in the logic by the rules �-elim and �-dup.

We can now continue proving our goal Equation (3.3). After Löb and unfold-rec-l,

our goal is:(
∃𝑛. ℓ𝑙 ↦→ 𝑛 ∗ ℓ𝑟 ↦→s 𝑛 ∗ isLock(𝑣, false)

N
,

� ( |= (rec . . .) () - (𝜆 . . .) () : Z)

)
` |= (let𝑛 := !ℓ . . .) - . . . : Z (3.4)
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refines-closure

Δ ` �( |= 𝑣1 () - 𝑣2 () : 𝐴)
Δ ` |= 𝑣1 - 𝑣2 : () → 𝐴

iris-�-intro

All hypotheses in Δ are persistent Δ ` 𝐺
Δ ` �𝐺

alloc-l

∀ℓ . Δ, ℓ ↦→ 𝑣 ` |= 𝐾 [ℓ] - 𝑒 : 𝐴
Δ ` |= 𝐾 [ref 𝑣] - 𝑒 : 𝐴

alloc-r

∀ℓ . Δ, ℓ ↦→s 𝑣 ` |=E 𝑒 - 𝐾 [ℓ] : 𝐴
Δ ` |=E 𝑒 - 𝐾 [ref 𝑣] : 𝐴

newlock-r

∀𝑣 . Δ, isLock(𝑣, false) ` |=E 𝑒 - 𝐾 [𝑣] : 𝐴
Δ ` |=E 𝑒 - 𝐾 [newlock ()] : 𝐴

inv-alloc

Δ ` ⊲𝑅 ∗ ( 𝑅 N −∗|= 𝑒1 - 𝑒2 : 𝐴)
Δ ` |= 𝑒1 - 𝑒2 : 𝐴

(a) Proof rules relevant for Proof Phase 1 and Proof Phase 2.

Löb

Δ, ⊲�(Δ −∗ 𝐺) ` 𝐺
Δ ` 𝐺

�-elim

� 𝑃 ` 𝑃
�-dup

� 𝑃 ` � 𝑃 ∗� 𝑃

unfold-rec-l

Δ ` ⊲( |= 𝑒 [(rec 𝑓 𝑥 := 𝑒)/𝑓 ] [𝑣/𝑥] - 𝑒 ′ : 𝐴)
Δ `|= (rec 𝑓 𝑥 := 𝑒) 𝑣 - 𝑒 ′ : 𝐴

⊲-intro
Δ′ obtained from Δ by stripping o� at most one ⊲ of every hypothesis Δ′ ` 𝑃

Δ ` ⊲ 𝑃

(b) Proof rules relevant for Proof Phase 3.

inv-access

N ⊆ E

𝑅
N ` |VE E\N

(
⊲𝑅 ∗

(
⊲𝑅 −∗ |VE\N E True

)) fupd-elim

𝑃 ` |VE1 E2𝑄 Δ, 𝑄 ` |VE2 E3 𝑅

Δ, 𝑃 ` |VE1 E3 𝑅

load-l

Δ ` |V> E ∃𝑣 . ℓ ↦→ 𝑣 ∗ ⊲(ℓ ↦→ 𝑣 −∗ |=E 𝐾 [𝑣] - 𝑒 : 𝐴)
Δ ` |= 𝐾 [!ℓ] - 𝑒 : 𝐴

refines-fupd

Δ ` |VE > |= 𝑒1 - 𝑒2 : 𝐴

Δ ` |=E 𝑒1 - 𝑒2 : 𝐴

cas-l

Δ ` |V> E ∃𝑣 . ℓ ↦→ 𝑣 ∗ ⊲
(
p𝑣 = 𝑣1q ∗ ℓ ↦→ 𝑣2 −∗ |=E 𝐾 [true] - 𝑒 : 𝐴 ∧
p𝑣 ≠ 𝑣1q ∗ ℓ ↦→ 𝑣 −∗ |=E 𝐾 [false] - 𝑒 : 𝐴

)
Δ ` |= 𝐾 [CAS ℓ 𝑣1 𝑣2] - 𝑒 : 𝐴

refines-z

Δ ` |= 𝑧 - 𝑧 : Z

acqire-r

Δ, isLock(𝑣, true) ` |=E 𝑒 - 𝐾 [()] : 𝐴
Δ, isLock(𝑣, false) ` |=E 𝑒 - 𝐾 [acquire 𝑣] : 𝐴

load-r

Δ, ℓ ↦→s 𝑣 ` |=E 𝑒 - 𝐾 [𝑣] : 𝐴
Δ, ℓ ↦→s 𝑣 ` |=E 𝑒 - 𝐾 [!ℓ] : 𝐴

fupd-intro

𝑃 ` |VE E 𝑃

release-r

Δ, isLock(𝑣, false) ` |=E 𝑒 - 𝐾 [()] : 𝐴
Δ, isLock(𝑣, true) ` |=E 𝑒 - 𝐾 [release 𝑣] : 𝐴

store-r

Δ, ℓ ↦→s 𝑣 ` |=E 𝑒 - 𝐾 [()] : 𝐴
Δ, ℓ ↦→s 𝑤 ` |=E 𝑒 - 𝐾 [ℓ ← 𝑣] : 𝐴

(c) Proof rules relevant for Proof Phase 4.

Figure 3.3: A selection of the existing rules of Iris and ReLoC.
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Proof Phase 4: Symbolic execution of inner closures. To �nish the proof, we

need to justify the safety of the load and CAS operations of the left-hand expression.

Additionally, we need to show that a successful CAS from 𝑛 to 𝑛 + 1 (the linearization

point) corresponds to an execution path for the right-hand expression that terminates in

𝑛. The invariant we have established guarantees that. Some additional rules for symbolic

execution with invariants in ReLoC can be found in Figure 3.3c.

As mentioned before, we can only access the resources in 𝑅 for the duration of atomic

expressions. Let us consider the load-l rule, to see how this is enforced. The premise

of the rule mentions the fancy update modality |VE1 E2
. The semantics of |VE1 E2 𝑃

is: assuming all invariants with names in E1 hold, then 𝑃 holds, and additionally all

invariants with names in E2 hold. The masks E thus allow Iris to keep track of the

opened invariants, and avoids opening invariants twice (i.e., invariant reentrancy, which

is unsound). Note that load-l also shows that re�nement judgments |=E 𝑒1 - 𝑒2 : 𝐴
have a mask parameter. As shown by refines-fupd, this represents the initial mask of a

fancy update. We let E = > when the mask is omitted.

The inv-access rule shows the interplay between invariants and fancy updates. For

an invariant 𝑅
N
with name N , if N is contained in E, then removing N from E gives

us access to the resource 𝑅. The original mask E can only be restored by handing back 𝑅.

(Note that one only obtains 𝑅 under a later modality (⊲). This is necessary since invariants

in Iris are impredicative (Jung et al., 2018b; Svendsen and Birkedal, 2014), i.e., they may

contain any resource, including invariants themselves. The later modality allows Iris

to soundly deal with such cases, but for simple resources like ℓ ↦→ 𝑛 (which are called

timeless in Iris), the later modalities can be discarded.)

Returning to load-l: with E = > \ N , we can combine inv-access, fupd-elim and

fupd-intro to prove ∃𝑣 . ℓ ↦→ 𝑣 with the resources from our invariant. We then receive

ℓ ↦→ 𝑣 back, since the load operation does not change the state. Our new proof obligation

is: ©­­«
𝑅
N
, ℓ𝑙 ↦→ 𝑛, ℓ𝑟 ↦→s 𝑛, isLock(𝑣, false),

(⊲𝑅 −∗ |V>\N >True),
�( |= (rec . . .) () - (𝜆 . . .) () : Z)

ª®®¬ ` |=>\N (let𝑛 := 𝑛 . . .) - . . . : Z

Since we opened an invariant, the re�nement judgment after the turnstile hasN removed

from its mask. All symbolic execution rules for the left-hand side require the mask to

be >, while the symbolic execution rules for the right-hand side work for every mask

E. This re�ects the demonic and angelic nature of left-hand side and right-hand side

execution: we can keep invariants open for multiple steps on the right, but only during a

single atomic step on the left.

We refrain from symbolically executing the right-hand side until the CAS succeeds.

After the load, we restore the invariant using fupd-elim, and our hypothesis (⊲𝑅 −∗
|V>\N >True). We then use cas-l. Like at the load, our invariant will provide us with

some 𝑛′ for which ℓ𝑙 ↦→ 𝑛′, and the CAS will succeed precisely when 𝑛 = 𝑛′. Note that it is
crucial to also consider the case 𝑛 ≠ 𝑛′: this happens when another thread incremented

ℓ𝑙 between the load and the CAS of the current thread.

The conjunction (∧) in cas-l means that the proof splits into two separate proof

obligations. In the successful case, we receive the updated ℓ𝑙 ↦→ (𝑛 + 1), together with the

resource p𝑛 = 𝑛′q. This embeds the pure fact 𝑛 = 𝑛′ into Iris’s separation logic. Likewise,
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in the failing case we receive ℓ𝑙 ↦→ 𝑛′ back, together with the pure information p𝑛 ≠ 𝑛′q.
For case 𝑛 = 𝑛′, the CAS succeeds, and the left-hand side expression will be returning

𝑛. After some pure reduction, our proof obligation becomes:

©­­«
𝑅
N
, ℓ𝑙 ↦→ (𝑛 + 1), ℓ𝑟 ↦→s 𝑛,

isLock(𝑣, false), (⊲𝑅 −∗ |V>\N >True),
�( |= (rec . . .) () - (𝜆 . . .) () : Z)

ª®®¬ ` |=>\N 𝑛 - (acquire(𝑣); let𝑛 = !ℓ𝑟 . . .) : Z

At this point, we cannot restore the invariant: ℓ𝑙 and ℓ𝑟 point to di�erent values. Only

after symbolically executing the right-hand side will we be able to restore the invariant,

which indicates that the linearization point must be now. We therefore use acqire-r,

load-r, store-r and release-r to symbolically execute the right-hand side. We conclude

the proof of this case by closing the invariant with refines-fupd and fupd-elim, and

using refines-z.

For case 𝑛 ≠ 𝑛′, the CAS fails, and we receive back ℓ𝑙 ↦→ 𝑛′ unchanged. We restore the

invariant. After some pure reduction our goal becomes the Löb induction hypothesis,

concluding our proof:

𝑅
N
,� (|= (rec . . .) () - (𝜆 . . .) () : Z) ` |= (rec . . .) () - (𝜆 . . .) () : Z

3.2.3 Proof Automation Strategy
The above proof phases introduce di�erent challenges for proof automation, in rising

complexity:

• Proof Phase 1: Symbolic execution without preconditions, introducing the �
modality.

• Proof Phase 2: Not introducing the � modality to allow the user to allocate the

invariant.

• Proof Phase 3: Automatically performing Löb induction when it is necessary.

• Proof Phase 4: Symbolic execution where the preconditions are inside an invariant,

followed by automatic application of induction hypothesis.

In this section, we give a description of our proof strategy that can handle these challenges.

The strategy operates on goals Δ ` 𝐺 , where the grammar of 𝐺 is given by:

𝐺 ::= |=E 𝑒1 - 𝑒2 : 𝐴 | ⊲𝐺 | �𝐺 | |VE1 E2 ∃®𝑥 . 𝐿 ∗𝐺.

(𝐿 are ‘easy’ goals like ℓ ↦→ 𝑣 , described in §3.4.5). If 𝐺 is of one of the �rst three shapes,

the strategy either provides a rule to apply, or stops. If𝐺 has the last shape, we reuse the

existing automation of Chapter 2 to handle invariants, which operates on precisely these

goals.

Our proof strategy is the result of restating the original rules of ReLoC (Figure 3.3) so

that they can be applied systematically. Our new rules can be found in Figure 3.4. We

have veri�ed in Coq that these rules can be derived from the existing rules of ReLoC and

Iris. Rule exec-l generalizes symbolic execution rules like load-l over the expression 𝑒1,
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exec-l

atomic 𝑒1 𝑒1 ∉Val ∀®𝑥 . {𝐿} 𝑒1 {𝑣 .𝑈 }
Δ ` |V> E ∃®𝑥 . 𝐿 ∗ ⊲(∀𝑣 . 𝑈 −∗ |=E 𝐾 [𝑣] - 𝑒2 : 𝐴)

Δ ` |= 𝐾 [𝑒1] - 𝑒2 : 𝐴

exec-r

∀®𝑥 . {𝐿} 𝑒2 {𝑣 .𝑈 }s Δ ` |VE E ∃𝑥 . 𝐿 ∗ (∀𝑣 . 𝑈 −∗ |=E 𝑒1 - 𝐾 [𝑣] : 𝐴)
Δ ` |=E 𝑒1 - 𝐾 [𝑒2] : 𝐴

val-z

Δ ` |VE > p𝑧1 = 𝑧2q

Δ ` |=E 𝑧1 - 𝑧2 : Z

val-fun

Δ ` |VE > � ( |= 𝑣1 () - 𝑣2 () : 𝐴)
Δ ` |=E 𝑣1 - 𝑣2 : () → 𝐴

reloc-apply

Δ,�(Δ′ −∗|= 𝑒1 - 𝑒2 : 𝐴) ` |VE EΔ′ ∗ |VE > (∀𝑣1𝑣2 . 𝐴 𝑣1 𝑣2 −∗|= 𝐾1 [𝑣1] - 𝐾2 [𝑣2] : 𝐵)
Δ,�(Δ′ −∗|= 𝑒1 - 𝑒2 : 𝐴) ` |=E 𝐾1 [𝑒1] - 𝐾2 [𝑒2] : 𝐵

Figure 3.4: Derived proof rules for ReLoC suitable for proof automation.

where ∀®𝑥 . {𝐿} 𝑒1 {𝑣 .𝑈 } is a Hoare triple for 𝑒1. In Coq, ∀®𝑥 . {𝐿} 𝑒1 {𝑣 .𝑈 } is represented
by a type class, so that given an expression 𝑒1, the precondition 𝐿 and postcondition𝑈 can

be found automatically. Rule exec-r is similar, but uses Hoare triples ∀®𝑥 . {𝐿} 𝑒2 {𝑣 .𝑈 }s
for the right-hand side. Finally, val-z and val-fun keep the fancy update around and

have been generalized to all masks E so that the strategy can postpone closing invariants.

We can now give our proof search strategy for re�nement judgments. Suppose the

goal is Δ ` |=E 𝑒1 - 𝑒2 : 𝐴. We proceed by case distinction on both 𝑒1 and 𝑒2, and try the

following rules in order (omitting some cases, e.g., those related to pure reductions and

higher-order functions):

1. If 𝑒1 and 𝑒2 are values, apply rules like val-z and val-fun, depending on 𝐴.

2. If 𝑒1 is a value and 𝑒2 is not, apply exec-r.

3. If 𝑒1 is not a value and E = >, try the following:

(a) Find 𝑒 with 𝑒1 = 𝐾 [𝑒] for which exec-l is applicable, otherwise

(b) Try to �nd an induction hypothesis to apply with reloc-apply, otherwise

(c) If 𝑒1 := (rec 𝑓 𝑥 := 𝑏) 𝑣 , apply Löb induction with Löb, then start symbolic

execution of the function with unfold-rec-l.

4. If 𝑒1 is not a value and E ≠ >, but 𝑒2 ís a value, apply refines-fupd.

5. If 𝑒1 is not a value and E ≠ > and 𝑒2 is not a value, there are two valid ways

to proceed: either restore the invariant with refines-fupd, or perform symbolic

execution on the right with exec-r. Depending on the user’s preference, the proof

automation will backtrack on these choices, or stop and let the user choose how to

proceed.
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Additionally, for other goals Δ ` 𝐺 :

6. 𝐺 = �𝐺 ′: Apply iris-�-intro, but only if all hypotheses in Δ are persistent. Stop

otherwise.

7. 𝐺 = ⊲𝐺 ′: Apply rule ⊲-intro to introduce the later and strip laters from the

context.

8. 𝐺 = |VE1 E2 ∃®𝑥 . 𝐿 ∗𝐺 ′: Use proof automation from Diaframe to make progress.

Veri�cation of the example in Figure 3.2. The strategy above is available using the

iStepsS tactic in Coq. In the veri�cation of the example in Figure 3.2, the iStepsS tactic

stops at line 24 after applying val-fun for the second time. Item 6 (� introduction) would

be applicable, except that the proof context Δ is not persistent. Iris allows one to weaken

the context before introducing the � modality, but our automation refrains from doing

so—it often leads to improvable goals down the line. Our automation thus stops and

allows the user to allocate an invariant before proceeding. To allocate the invariant, we

use the iAssert tactic from the Iris Proof Mode.

Why these rules? Let us motivate our proof strategy and indicate how it re�ects the

design goals described in §3.1. After the invariant is established, the re�nement of the

two closures is established completely automatically, as is Design goal #1. Automatically

inferring invariants is outside Diaframe 2.0’s scope. The strategy as a whole makes

explicit the pattern followed in most interactive proofs, although the details di�er. To

be precise, the pattern is: symbolically execute the left-hand side, until you reach an

expression that may be subject to interference from the environment (i.e., for which an

invariant must be opened). The right-hand side expression may need to be symbolically

executed some number of times at these points.

Design goal #2 is to enable assistance with interactive tactics for di�cult re�nements.

To do so, it is crucial that the proof automation does not perform backtracking, unless

requested. None of the steps of our strategy perform backtracking, except for Item 5. This

step needs to choose between restoring the invariant, and symbolically executing the

right-hand expression. For linearizability, this corresponds to deferring or identifying

the linearization point, which is known to be hard. The iSmash tactic will backtrack on

this choice, and is used in Figure 3.2 to �nish the proof. The sequence iStepsS; iApply

refines-fupd; iStepsS also constitutes a valid proof: iStepsS will not backtrack, and

instead stop the proof automation. In that case, Iris’s iApply refines-fupd can be used

to instruct the proof automation to restore the invariant (defer linearization), after which

the proof can be �nished with a second call to iStepsS.

Finally, Design goal #3 is declarative and modular proof automation. In the imple-

mentation, Items 7 and 8 are part of the core proof automation module. Item 6 comes

in a separate module for handling �𝐺 ′ goals, that may be of independent use for other

goals. Items 1 to 5 are all part of the re�nement module. We achieve foundational proofs

(Design goal #4) by establishing that all rules used in our proof strategy can be derived

from the primitive rules of ReLoC and Iris (i.e., they are not axiomatic). These derivations

have been mechanized in Coq. Combined with the existing soundness proof of ReLoC

and Iris, this makes sure that our automation constructs closed Coq proofs w.r.t. the

operational semantics of the programming language involved.
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Definition inc : val :=1

rec: "f" "l" :=2

let: "n" := ! "l" in3

if: CAS "l" "n" ("n" + #1) then4

"n"5

else6

"f" "l".7

Global Instance inc spec (l : loc) :8

SPEC (z : Z), << l ↦→ #z >> inc #l << RET #z; l ↦→ #(z + 1) >>.9

Proof. iSmash. Qed.10

Figure 3.5: Veri�cation of a logically atomic triple for a �ne-grained concurrent incre-

menter in Diaframe 2.0.

3.3 Proof Automation for Logical Atomicity

This section considers logically atomic triples to establish linearizability. We start by

giving intuition about the need and meaning of such triples (§3.3.1). After discussing the

formal proof rules in Iris (§3.3.2), we show our strategy for proof automation of these

triples (§3.3.3).

3.3.1 Logical Atomicity in Iris
Consider the inc function de�ned in lines 1-7 of Figure 3.5. The pattern of recursively

trying to CAS occurs in various concurrent programs: we have seen it in fg incrementer

in §3.2, and it also occurs in the implementation of e.g., a ticket lock. To enable modular

veri�cation, we would like to give inc a useful speci�cation that can be used in the

veri�cation of other concurrent algorithms.

Let us try to specify inc using a regular Hoare triple {𝑃} 𝑒 {Φ} , where 𝑃 is an Iris

assertion and Φ is an Iris predicate on values. The Hoare triple expresses that for each

thread that owns resources satisfying the precondition 𝑃 , executing 𝑒 is safe, and if the

execution terminates with value𝑤 , the thread will end up owning resources satisfying

the postcondition Φ𝑤 . A naive speci�cation is {ℓ ↦→ 𝑧} inc ℓ {𝑣 . p𝑣 = 𝑧q ∗ ℓ ↦→ (𝑧 + 1)} .
This states that to execute inc ℓ , we need exclusive write-access to location ℓ , as indicated

by the precondition ℓ ↦→ 𝑛. Once inc ℓ terminates, it returns value 𝑧, and the ℓ ↦→ (𝑧 + 1)
in the postcondition tells us that the value stored by ℓ has been incremented. Although

provable, this speci�cation is not useful in a concurrent setting. It requires a thread to

give up ℓ ↦→ 𝑧 during inc ℓ , while it usually does not have exclusive access to ℓ ↦→ 𝑧.

We have seen that for re�nements, calls to CAS can be veri�ed in a concurrent setting.

This is because CAS is a physically atomic instruction, which gives us access to invariant

reasoning. To see how this works, we state Iris’s invariant rule for Hoare triples, and the

speci�cation for load:

hoare-load

{ℓ ↦→ 𝑣} !ℓ {𝑤.p𝑤 = 𝑣q ∗ ℓ ↦→ 𝑣}E

hoare-inv-access

atomic 𝑒 N ⊆ E
{⊲𝑅 ∗ 𝑃} 𝑒 {𝑣 . ⊲𝑅 ∗𝑄}E\N{

𝑅
N ∗ 𝑃

}
𝑒 {𝑣 . 𝑄}E
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hoare-load gives a straightforward speci�cation for loading a value: the expression

returns the stored value 𝑣 , and one keeps access to ℓ ↦→ 𝑣 . Like re�nement judg-

ments, every Hoare triple is annotated with a mask E. When opening invariants with

hoare-inv-access, the invariant names are removed from the masks, which prevents

invariant reentrancy.

We can open invariants around the load instruction with hoare-inv-access only

because it is a physically atomic instruction, i.e., we have ‘atomic (!ℓ)’. Since we do

not have ‘atomic (inc ℓ)’, this rule is not applicable. But although inc is not physically

atomic, the e�ects of inc appear to take place atomically for clients. That is, at a certain

point during the execution of inc, namely, when the CAS succeeds, ℓ ↦→ 𝑧 is atomically

consumed to produce ℓ ↦→ (𝑧 + 1). This gives us a characterization of linearizability: an

operation is linearizable if it appears to take place atomically/instantly somewhere during

its execution, and the precise moment when this happens place is called the linearization

point. Inspired by the TaDA logic (da Rocha Pinto et al., 2014), Iris features a special kind

of Hoare triple to specify this, called a logically atomic triple (Jung et al., 2015; Jung, 2019;

Jung et al., 2020). We specify the behavior of inc using the logically atomic triple:

inc-logatom

〈𝑧. ℓ ↦→ 𝑧〉 inc ℓ 〈𝑣 . p𝑣 = 𝑧q ∗ ℓ ↦→ (𝑧 + 1)〉∅

We replaced { with 〈, what did we gain? In words, the meaning of a logically atomic

triple 〈𝑃〉 𝑒 〈Φ〉 is: at the linearization point in the execution of 𝑒 , the resources in 𝑃 are

atomically consumed to produce the resources in Φ 𝑣 , where 𝑣 is the �nal return value of

expression 𝑒 . Birkedal et al. (2021) established formally that such triples indeed imply

linearizability. Logically atomic triples have the additional bene�t that they can be used

inside the logic, with the following reasoning rules:

la-inv

𝑅
N 〈®𝑥 . 𝛼 ∗ ⊲𝑅〉 𝑒 〈𝑣 . 𝛽 ∗ ⊲𝑅〉E\N

〈®𝑥 . 𝛼〉 𝑒 〈𝑣 . 𝛽〉E

la-hoare

� 〈®𝑥 . 𝛼〉 𝑒 〈𝑣 . 𝛽〉E
∀®𝑥 . {𝛼} 𝑒 {𝑣 . 𝛽}>

la-inv shows that it is indeed possible to open invariants around logically atomic triples.

The la-hoare rule shows that logically atomic triples are stronger than ordinary Hoare

triples.

The binder 𝑧 in inc-logatom is somewhat curious, being scoped over both the pre-

and postcondition of the triple, but not over the expression. Logically atomic triples allow

a certain amount of interference from other threads, such as concurrent calls to inc. In

such cases, it is enough that at each moment there is some 𝑧 for which ℓ ↦→ 𝑧. This 𝑧

needs not be known when the function is called, and may well be di�erent at di�erent

moments. To re�ect this in the logic, the pre- and postconditions of logically atomic

triples can be bound by (a number of) quanti�ers ®𝑥 .

3.3.2 Background: Proof Rules for Logically Atomic Triples
To see how we use logically atomic triples, we will �rst discuss Hoare triples in Iris

in more detail. Hoare triples in Iris are not a primitive notion, but de�ned in terms of

weakest preconditions:

{𝑃} 𝑒 {Φ} , �
(
𝑃 −∗ wp 𝑒 {Φ}

)
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The weakest precondition wp 𝑒 {Φ} asserts that execution of 𝑒 is safe (cannot get stuck),

and if 𝑒 terminates with value 𝑣 , we get Φ 𝑣 . The Hoare triple {𝑃} 𝑒 {Φ} thus states that
we can persistently (so, multiple times) relinquish 𝑃 to execute 𝑒 , after which we obtain

Φ 𝑣 for the return value 𝑣 .

Like Hoare triples, logically atomic triples are de�ned in terms of weakest precondi-

tions:
1

la-def

〈®𝑥 . 𝛼〉 𝑒 〈𝑣 . 𝛽〉E , ∀Φ. 〈®𝑥 . 𝛼 | 𝑣 . 𝛽 V Φ 𝑣〉>\E −∗ wp 𝑒 {Φ}

This expresses that for any postcondition Φ, to prove wp 𝑒 {Φ} it is enough to show an

atomic update of the form 〈®𝑥 . 𝛼 | 𝑣 . 𝛽 V Φ 𝑣〉>\E . Atomic updates represent the possibility

to witness variables ®𝑥 for which 𝛼 holds, at any instant. If one uses this possibility, one

either needs to hand back ownership of this exact 𝛼 to recover the atomic update, or

hand back 𝛽 to obtain Φ 𝑣 (commit the linearization point). By quantifying over Φ, Iris
makes sure that the only way to prove a logically atomic triple is by using the atomic

update 〈®𝑥 . 𝛼 | 𝑣 . 𝛽 V Φ 𝑣〉>\E .
Proving logically atomic triples. Proving a logically atomic triple 〈®𝑥 . 𝛼〉 𝑒 〈𝑣 . 𝛽〉E is
a matter of ‘just’ proving a weakest precondition, i.e., a goal Δ ` wp 𝑒 {Φ}. However,
we need the atomic update to get temporary access to 𝛼 and eventually get Φ. Atomic

updates can be accessed as follows:

au-access-iris

〈®𝑥 . 𝛼 | 𝑣 . 𝛽 V 𝑄〉E ` |VE ∅∃®𝑥 . 𝛼 ∗
( (
𝛼 −∗ |V∅ E 〈®𝑥 . 𝛼 | 𝑣 . 𝛽 V 𝑄〉E

)
∧

(
∀𝑣 . 𝛽 −∗ |V∅ E𝑄

) )
This rule states that (similar to Iris’s rule for invariants inv-access) an atomic update

provides access to 𝛼 by changing the masks of a fancy update ( |VE ∅
). After we obtain 𝛼 ,

there are two ways to restore the mask, corresponding to the two sides of the (regular)

conjunction. In the left conjunct, we need to return precisely 𝛼 . This corresponds to

‘peeking’ at the state, without changing it (in our example, this happens when the CAS

fails). After peeking, we receive back the atomic update, deferring the linearization

point. For the right conjunct, we need to provide 𝛽 , which corresponds to committing

to the linearization point (in our example, this happens when the CAS succeeds). We

then get access to 𝑄 , the postcondition in la-def. One might be surprised to see a

regular conjunction (∧) in separation logic, where the separating conjunction (∗) is more

common. Regular conjunction corresponds to a form of internal choice: if one owns a

regular conjunction 𝑃 ∧𝑄 , one can either use it as 𝑃 (here, defer linearization) or as 𝑄

(here, commit linearization), but not as both.

A proof of the logically atomic triple for inc in Figure 3.5 needs to account for the

recursive call when the CAS fails. We will use Löb induction once more—Figure 3.6

contains the relevant rules. By combining Löb, unfold-rec and ⊲-intro, we perform

induction and start symbolic execution of the function. rec-apply shows how to apply

the induction hypothesis at recursive calls.

1
The de�nition of logically atomic triples does not feature the � modality to allow for private preconditions,

i.e., preconditions that one must relinquish completely at the start of the execution of 𝑒 . To make a logically

atomic triple persistent, one has to add the persistence modality explicitly. This is for example visible in rule

la-hoare.
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Löb

Δ, ⊲�(Δ −∗ 𝐺) ` 𝐺
Δ ` 𝐺

unfold-rec

Δ ` ⊲wp 𝑒 [(rec 𝑓 𝑥 := 𝑒)/𝑓 ] [𝑣/𝑥] {Φ}
Δ ` wp (rec 𝑓 𝑥 := 𝑒) 𝑣 {Φ}

rec-apply

Δ,�(Δ′ −∗ wp 𝑒 {Ψ}) ` |V> >Δ′ ∗ (∀𝑤. Ψ𝑤 −∗ wp 𝐾 [𝑤] {Φ})
Δ,�(Δ′ −∗ wp 𝑒 {Ψ}) ` wp 𝐾 [𝑒] {Φ}

Figure 3.6: Selection of Iris’s proof rules for Löb induction on weakest preconditions.

Using logically atomic triples. With a proof of a logically atomic triple at hand,

clients can use a combination of la-hoare, la-inv and related rules to open invariants

around the expression. In actual proofs, this is done di�erently, since working beneath

binder ®𝑥 is cumbersome in Coq. Client veri�cations in Iris usually rely on the following

rule:

sym-ex-logatom

` 〈®𝑥 . 𝛼〉 𝑒 〈𝑣 . 𝛽〉E Δ `
〈
®𝑥 . 𝛼 | 𝑣 . 𝛽 V wp 𝐾 [𝑣] {Φ}

〉
>\E

Δ ` wp 𝐾 [𝑒] {Φ}

Instead of proving a logically atomic triple directly, one is now asked to prove an atomic

update. Atomic updates can be introduced as follows:

au-intro

Δ ` |VE ?E′∃®𝑥 . 𝛼 ∗
(
(𝛼 −∗ |V?E′ EΔ) ∧ (∀𝑣 . 𝛽 −∗ |V?E′ E𝑄)

)
Δ ` 〈®𝑥 . 𝛼 | 𝑣 . 𝛽 V 𝑄〉E

This rule asks us to show that opening some invariants in E gives us 𝛼 . Additionally, we

need to prove that obtaining 𝛼 is non-destructive: the original context Δ can be restored.

This ensures that when the implementation peeks at 𝛼 , it does not a�ect the client. The

other side of the conjunction shows that the atomic postcondition 𝛽 can be used to restore

the invariants, and prove 𝑄 .

3.3.3 Proof Automation Strategy
Our proof automation for logical atomicity should be able to make progress on the

following goals:

• Weakest preconditions: Δ ` wp 𝑒 {Φ}. The de�nition of logically atomic triples

la-def features regular weakest preconditions as the goal.

• Atomic updates: Δ ` 〈®𝑥 . 𝛼 | 𝑣 . 𝛽 V 𝑄〉E . After applying a known logically atomic

triple with sym-ex-logatom, the goal becomes an atomic update.

• Goals of the form Δ ` |VE1 E2 ∃®𝑥 . 𝐿 ∗𝐺 . These goals occur after introducing atomic

updates with au-intro or when establishing the precondition of heap operations

such as load and CAS. The context Δ might contain atomic updates that should be

eliminated via au-access-iris.
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• Goals pre�xed by a later modality: Δ ` ⊲𝐺 , when using unfold-rec after Löb

induction.

Our proof search strategy for these goal extends the existing proof search strategy from

Diaframe by internalizing Löb induction, and by adding support for logically atomic

triples.

Suppose our goal is Δ ` wp 𝑒 {Φ}. We proceed by case analysis on 𝑒 , trying the

following rules in order (omitting some cases, e.g., those related to pure reductions and

higher-order functions):

1. If 𝑒 is a value 𝑣 , then directly continue with proving Δ ` |V> >Φ 𝑣 .

2. If 𝑒 = 𝐾 [𝑒 ′], then either:

(a) We have a regular speci�cation ∀®𝑥 . {𝐿} 𝑒 ′ {𝑈 } for 𝑒 ′. Use Diaframe’s existing

approach to make progress, which applies a rule similar to exec-l.

(b) We have a speci�cation 〈®𝑥 . 𝐿〉 𝑒 ′ 〈𝑣 .𝑈 〉E . Apply sym-ex-logatom, continue

with new goal Δ `
〈
®𝑥 . 𝐿 | 𝑣 .𝑈 V wp 𝐾 [𝑣] {Φ}

〉
>\E .

(c) Otherwise, try to �nd an induction hypothesis to use with rec-apply.

3. If 𝑒 = (rec 𝑓 𝑥 := 𝑏) 𝑣 , i.e., a possibly recursive function applied to a value 𝑣 . Two

cases:

(a) There is no actual recursion, i.e., 𝑓 does not occur in 𝑏. Apply unfold-rec

and continue with new goal Δ ` ⊲wp 𝑏 [𝑣/𝑥] {Φ}.
(b) For recursive functions. Apply Löb, then apply unfold-rec. Continue with

new goal Δ, ⊲�(Δ −∗ wp 𝑒 {Φ}) ` ⊲wp 𝑏 [𝑒/𝑓 ] [𝑣 ′/𝑥] {Φ}.2 Note that Δ may

contain an atomic update, which will thus be needed to apply the induction

hypothesis for recursive calls.

For Δ ` 𝐺 with 𝐺 not a weakest precondition, we distinguish the following cases:

4. 𝐺 = ⊲𝐺 ′. Apply the ⊲-intro rule, which introduces the later from the goal and

strips later modalities from hypotheses in the context.

5. 𝐺 = 〈®𝑥 . 𝐿 | 𝑣 .𝑈 V 𝐺 ′〉E . Two cases:

(a) If𝐺 ∈ Δ, directly use it to �nish the proof. This situation occurs after applying
the induction hypothesis with rec-apply.

(b) Otherwise, we introduce the atomic update with au-intro. Our new goal

becomes Δ ` |VE ?E′∃®𝑥 . 𝐿 ∗
( (
𝐿 −∗ |V?E′ EΔ

)
∧

(
∀𝑣 . 𝑈 −∗ |V?E′ E𝐺

) )
.

6. 𝐺 = |VE1 E2 ∃®𝑥 . 𝐿 ∗𝐺 . Use proof automation from Diaframe to make progress. If

enabled and when relevant, Diaframe will backtrack to determine the linearization

point.

This strategy can prove the logically atomic triple in Figure 3.5 without user assistance.

It uses the iSmash instead of the iStepsS tactic, which enables backtracking for automat-

ically determining the linearization point in Item 6. Proving atomic updates is covered

by Item 5; we now provide some details on how we use atomic updates in Item 6.

2
In the Coq implementation we additionally generalize the Löb induction hypothesis over the arguments

supplied to 𝑒 .
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Using atomic updates. The veri�cation of a logically atomic triple crucially depends

on eliminating atomic updates 〈®𝑥 . 𝛼 | 𝑣 . 𝛽 V 𝑄〉E with au-access-iris. The elimination

of atomic updates needs to happen in Item 6 when the Diaframe automation needs to

obtain ownership of 𝛼 .

This can be done by allowing Diaframe to ‘look inside’ atomic updates, allowing it to

determine ways of obtaining ownership of resources inside 𝛼 . Note that au-access-iris

is similar to the invariant accessing rule inv-access, which Diaframe can also apply

automatically. The main di�erence is that we have two independent ways to restore the

mask (indicated by the ∧): we either defer or commit the linearization point. We need to

ensure this choice is not made too early, and achieve this by replacing the conjunction

with a disjunction on the left-hand side of a wand:
3

au-access-diaframe

〈®𝑥 . 𝛼 | 𝑣 . 𝛽 V 𝑄〉E ` |VE ∅∃®𝑥 . 𝛼 ∗ ∀𝑚𝑣.
((𝛼 ∗ p𝑚𝑣 = Noneq) ∨ (∃𝑣 . 𝛽 ∗ p𝑚𝑣 = Some 𝑣q)) −∗
|V∅ Ematch𝑚𝑣 with None⇒ 〈®𝑥 . 𝛼 | 𝑣 . 𝛽 V 𝑄〉E | Some 𝑣 ⇒ 𝑄 end

This disjunction needs to be proven to restore the mask, and the side of the disjunction

will indicate whether the linearization point should be deferred or committed. The rule

au-access-diaframe is derived from the rules for atomic updates of Iris. This result is

mechanized in Coq.

Let us describe how this is used in the example from Figure 3.5. To symbolically

execute the load and CAS, ownership of ℓ ↦→ 𝑧 is needed. Since the atomic update

〈𝑧. ℓ ↦→ 𝑧 | 𝑣 . ℓ ↦→ (𝑧 + 1) V 𝑄〉E is in our context, Diaframe will access the atomic up-

date with au-access-diaframe to obtain temporary ownership of ℓ ↦→ 𝑧. After symbolic

execution, we receive back a possibly changed ℓ ↦→ 𝑧 ′, and the remaining ‘closing re-

source’ of shape (∀𝑚𝑣. ∨ −∗ |V∅ E ). Diaframe notices it can use this closing resource

to restore the mask, so the goal becomes (note that𝑚𝑣 is bound in the remaining proof

obligation 𝐺):

Δ ` |V∅ ∅∃𝑚𝑣.
(
(𝛼 ∗ p𝑚𝑣 = Noneq) ∨ (∃𝑣 . 𝛽 ∗ p𝑚𝑣 = Some 𝑣q)

)
∗𝐺.

The iSmash tactic uses backtracking to pick the correct side of this disjunction—i.e., to

decide if the linearization point should be deferred or committed. We can also use the

non-backtracking tactic iStepsS and pick the correct disjunct interactively with the Iris

tactics iLeft/iRight.

Functions. There are two cases for functions. Item (3-b) handles the situation in

which the function is recursive and generates a Löb induction hypothesis. Item (3-a) is a

specialized version that handles the case where there is no actual recursion. Omitting this

specialized version would work, but would cause Item (3-b) to generate useless induction

hypotheses that in turn increase the search space in Item (2-c), and thus slow down the

automation. Omitting Item (3-a) would also make the goal less readable if the user wants

to help out with an interactive proof.

Why these rules? The above rules constitute a strategy that can prove logical atomicity

of ‘simple’ examples (Design goal # 1). We have demonstrated this on the example

3
This transformation is sound since both sides of the ∧ feature a fancy update |V∅ E

with the same mask.
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in Figure 3.5, and show a number of other simple examples in § 3.5. To ensure good

integration with interactive proofs (Design goal #2), we once again minimize the use of

backtracking. Backtracking is only needed in Item 6 to identify the linearization point,

just like for re�nements. The proof automation is modular (Design goal #3): Items 4 and 6

are part of the core automation module, Items 1 to 3 are part of the weakest precondition

module, while Item 5 comes in a separate module for proving atomic updates. Similar

to our automation for re�nements, we achieve foundational proofs (Design goal #4) by

mechanizing that all rules used in our proof strategy can be derived from Iris’s primitive

rules.

3.4 Implementation as Extensible Proof Strategy

In § 3.2 and 3.3 we have seen descriptions of our proof search strategies for contextual

re�nement and logical atomicity, respectively. This section discusses their implementa-

tion; speci�cally, how they �t in the extensible proof automation strategy that underpins

Diaframe 2.0.

Proof search strategies operate on Iris entailments Δ ` 𝐺 , where (in our cases) 𝐺

is a re�nement judgment, later or persistence modality (§3.2), a weakest precondition,

or an atomic update (§3.3). As we will see in §3.4.5, rules of these strategies cannot be

represented by the automation of Diaframe. However, our insight is that each rule in

such a strategy falls into one of the following categories:

1. Rules of the form Δ ` 𝐺 ′ =⇒ (Δ ` 𝐺), and 𝐺 ′ ` 𝐺 is provable.

2. Rules of the form Δ \ 𝐻 ` 𝐺 ′ =⇒ (Δ ` 𝐺) for some 𝐻 ∈ Δ, and 𝐻 ∗ 𝐺 ′ ` 𝐺 is

provable.

3. Rules of the form (Δ′ ` 𝐺 ′) =⇒ (Δ ` 𝐺), where Δ′ and𝐺 ′ can be calculated from

Δ and 𝐺 by just inspecting their head symbols (i.e., modalities).

4. Rules of the form (Δ ` 𝐺 ′) =⇒ (Δ ` 𝐺), where 𝐺 ′ mentions the entire context Δ.

We repeat a select number of cases of the proof search strategy in § 3.2 and 3.3 to make

this apparent:

1. If 𝐺 = wp 𝑒 {Φ} and 𝑒 is a value 𝑣 , continue with Δ ` |V> >Φ 𝑣 .

2. If𝐺 = 〈®𝑥 . 𝐿 | 𝑣 .𝑈 V Φ〉E , check if𝐺 ∈ Δ. If so, we can continue with Δ \𝐺 ` True.
3. If 𝐺 = �𝐺 ′, and all hypotheses in Δ are persistent, continue with Δ ` 𝐺 ′. Note

that the entailment 𝐺 ′ ` �𝐺 ′ does not hold. This rule is only valid because of the

condition on Δ.

4. If 𝐺 = 〈®𝑥 . 𝐿 | 𝑣 .𝑈 V Φ〉E , and the above Rule 2 is not applicable, apply au-intro.

The new goal has shape Δ ` |VE ?E′∃®𝑥 . 𝐿 ∗
(
(𝐿 −∗ |V?E′ EΔ) ∧ (∀𝑣 . 𝑈 −∗ |V?E′ E𝐺)

)
.

The Δ occurs on the right-hand-side of the turnstile, so this rule falls outside the

�rst two categories.

We describe a generic proof strategy based on this insight, that can be extended to support

new goals (§3.4.5). We have implemented this proof strategy in Ltac (Delahaye, 2000).

Support for new goals and proof rules can be added by providing appropriate hints

(registered as type class instances in Coq (Sozeau and Oury, 2008)), corresponding to

Category 1 to 4. Rules of Category 1 and 2 �t into our abduction hints (§ 3.4.1 and 3.4.2),
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while rules of Category 3 and 4 �t into our transformer hints (§3.4.3). A combination

of abduction hints and transformer hints (§3.4.4) can be used to implement composite

procedures such as Löb induction.

3.4.1 Abduction Hints
This section de�nes abduction hints to capture rules in Category 1 and 2:

𝐻 ∗ [𝐺 ′] � 𝐴 , 𝐻 ∗𝐺 ′ ` 𝐴

Here, we give some hypothesis 𝐻 ∈ Δ and current goal 𝐴 as input to type class search,

and receive the new goal𝐺 ′ as an output, indicated by the square brackets. Given some𝐻

and 𝐴, we want to �nd a ‘good’ new goal 𝐺 ′—which might not exist. If a good 𝐺 ′ cannot
be found, we start the search again for a di�erent 𝐻 ∈ Δ. We leave ‘good’ unde�ned, but

consider False and 𝐻 −∗ 𝐺 bad choices since they will make the proof automation get

stuck, or loop.

The format of abduction hints directly represents hints of Category 2, but what about

Category 1? Category 1 is encoded by performing a technical trick from Chapter 2,

relying on the fact that𝐺 ′ ` 𝐴 implies True ∗𝐺 ′ ` 𝐴. Since Δ ` True vacuously holds, we

can pretend to have True ∈ Δ for the purpose of �tting Category 1 into Category 2. To

account for the case where a priority of rules is desired (some Category 1 rules should be

tried either before or after Category 2 rules), we de�ne two syntactical markers 𝜀0 , True
and 𝜀1 , True. Our proof search strategy will always �nd 𝜀0 ∈ Δ before any actual

hypothesis in Δ, while 𝜀1 ∈ Δ will always be found last. This technique is similar to

techniques by Gonthier et al. (2011), where multiple equivalent de�nitions are used to

obtain proof automation rules with di�erent priorities.

The proof search strategy proceeds as follows. If our goal is Δ ` 𝐴, use type classes
to �nd 𝐻 ∈ Δ and 𝐺 ′ such that 𝐻 ∗ [𝐺 ′] � 𝐴. Continue with goal Δ′ ` 𝐺 ′, where Δ′ is
obtained from context Δ by removing 𝐻 , unless 𝐻 is persistent or equal to 𝜀0 or 𝜀1.

As an example, these abduction hints implement two cases of the strategy for logical

atomicity:

abduct-wp-val

𝜀0 ∗
[
|V> >Φ 𝑣

]
� wp 𝑣 {Φ}

abduct-sym-ex-logatom

` 〈®𝑥 . 𝐿〉 𝑒 〈𝑣 .Ψ〉E
𝜀0 ∗

[〈
®𝑥 . 𝐿 | 𝑣 .𝑈 V wp 𝐾 [𝑣] {Φ}

〉
>\E

]
� wp 𝐾 [𝑒] {Φ}

Both rules will be directly applied (indicated by 𝜀0) if the goal matches the conclusion and

the side-conditions can be solved. After applying a rule, the goal will be replaced by the

part between square brackets [ and ]. To make Diaframe 2.0 use these hints, one provides

type class instances of above form—which requires a proof of the claimed entailment.

Hints thus serve two purposes: they both implement the proof search strategy and prove

it sound.

3.4.2 Near-Applicability
Diaframe 2.0 can apply abduction hints when the logical state or current goal nearly

matches a rule. Let us demonstrate this on the rule rec-apply from §3.3.3 to apply Löb
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induction hypotheses. This rule is monolithic since it takes care of two tasks: apply a

weakest precondition below an evaluation context 𝐾 in the goal, and �nd a weakest

precondition below a magic wand in the context Δ. In the implementation in Diaframe

2.0, this rule is decomposed in separate hints for each task:

abduct-wp-bind

wp 𝑒 {Φ} ∗
[
∀𝑣 . Φ 𝑣 −∗ wp 𝐾 [𝑣] {Ψ}

]
� wp 𝐾 [𝑒] {Ψ}

abduct-wand

𝐻 ∗ [𝐺 ′] � 𝐺
(𝐿 −∗ 𝐻 ) ∗ [𝐿 ∗𝐺 ′] � 𝐺

The key hypothesiswp 𝑒 {Φ} of abduct-wp-bind does not precisely match the induction

hypothesis �(Δ −∗ wp 𝑒 {Φ}) that was generated by Löb. To address this, abduction

hints are closed under the connectives of separation logic by recursive rules such as

abduct-wand (similar recursive rules exist for other connectives of separation logic,

e.g., universal quanti�cation). The recursive rules ensure that every abduction hint

𝐴 ∗ [𝐺 ′] � 𝐺 is not just relevant when 𝐴 ∈ Δ, but also when for example (𝐻 −∗ 𝐴) ∈ Δ
or (𝐻1 −∗ 𝐻2 −∗ (𝐴 ∗ 𝐵)) ∈ Δ.

These two rules also come in handy for situations besides rec-apply. For example,

abduct-wand and similar recursive rules are used for Löb induction in re�nement proofs.

The abduction hint abduct-wp-bind is useful when verifying examples with higher-

order functions. There, one might have a speci�cation for a closure in the proof context,

and abduct-wp-bind makes it possible to use this speci�cation in any evaluation context.

3.4.3 Transformer Hints for Modalities
This section de�nes transformer hints, which capture rules in Category 3. We show how

these hints support the introduction of the � and ⊲ modalities. Transformer hints come

in two �avors—hypothesis and context transformer hints:
4

𝐻,T →∼hyp [T ′] , T ′ ` (𝐻 −∗ T )
Δ,T →∼ctx [𝐺] , (Δ ` 𝐺) =⇒ (Δ ` T )

Like before, terms between brackets are outputs of type class search, the other terms

are inputs. We use the class T to indicate goals on which transformer hints should

be used—this class is disjoint from ordinary goals 𝐺 on which abduction hints should

be used. Examples of transformer hints are the introduction rules for the later (⊲) and

persistence (�) modalities:

⊲𝐻, ⊲𝐺
→∼hyp [⊲(𝐻 −∗ 𝐺)]

no 𝐻 ∈ Δ pre�xed by ⊲

Δ, ⊲𝐺
→∼ctx [𝐺]

all 𝐻 ∈ Δ are persistent

Δ,�𝐺
→∼ctx [𝐺]

When proving a goal of shape Δ ` T , the proof search strategy takes the following steps:

1. Find 𝐻 ∈ Δ and T ′ such that 𝐻,T →∼hyp [T ′]. Continue with goal Δ′ ` T ′, where
Δ′ is the context Δ in which 𝐻 is removed. Unlike abduction hints, 𝐻 is also

removed if it is persistent, and 𝜀0 and 𝜀1 are not detected by these hints.

4
One might note that a hypothesis transformer hint𝐻, T →∼hyp [T′] is logically equivalent to an abduction

hint 𝐻 ∗ [T′] � T . While logically equivalent, these hints are di�erent operationally. Hypothesis transformer

hints only act on the head-symbol/modality of hypothesis𝐻 , while abduction hints will look beneath connectives

of 𝐻 using rules like abduct-wand, as explained in §3.4.2.
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2. Otherwise, �nd 𝐺 such that Δ,T →∼ctx [𝐺]. Continue with goal Δ ` 𝐺 .

One can check that the transformer hints for the later modality �rst ‘revert’ and strip the

later o� of all hypotheses with a later, and only then introduce the later modality.

3.4.4 Transformer Hints for Other Rules
In §3.4.3, we saw that transformer hints are �exible enough to support the introduction

of modalities. In this section, we show that transformer hints can be combined with

abduction hints to support rules in Category 4, like au-intro and Löb. Recall our instance

of the proof strategy for the introduction rule for atomic updates from §3.3.3:

• If 𝐺 = 〈®𝑥 . 𝐿 | 𝑣 .𝑈 V Φ〉E , and 𝐺 does not occur in our environment Δ. We intro-

duce the atomic update with rule au-intro. The new goal has shape

Δ ` |VE ?E′∃®𝑥 . 𝐿 ∗
( (
𝐿 −∗ |V?E′ EΔ

)
∧

(
∀𝑣 . 𝑈 −∗ |V?E′ E𝐺

) )
.

Note that Δ occurs on the right-hand-side of the turnstile, so this rule falls outside the

�rst two categories. Checking that 〈®𝑥 . 𝐿 | 𝑣 .𝑈 V Φ〉E ∉ Δ is crucial—proof search will

otherwise loop on the goal 〈®𝑥 . 𝐿 | 𝑣 .𝑈 V Φ〉E ` 〈®𝑥 . 𝐿 | 𝑣 .𝑈 V Φ〉E . On such a goal,

we want to use the abduction hint 𝐺 ∗ [True] � 𝐺 , instead of applying au-intro. We

therefore add an intermediate form AUpre ( ®𝑥, 𝛼, 𝑣, 𝛽,Φ, E) , 〈®𝑥 . 𝛼 | 𝑣 . 𝛽 V Φ〉E and a

combination of transformer and abduction hints:

au-intro-pre

𝜀1 ∗
[
AUpre ( ®𝑥, 𝛼, 𝑣, 𝛽,Φ, E)

]
� 〈®𝑥 . 𝛼 | 𝑣 . 𝛽 V Φ〉E

au-intro-go

Δ,AUpre ( ®𝑥, 𝛼, 𝑣, 𝛽,Φ, E) →∼ctx[
|VE ?E′∃®𝑥 . 𝛼 ∗ ((𝛼 −∗ |V?E′ E 𝐿 ∗ Δ) ∧ (∀𝑣 . 𝛽 −∗ |V?E′ EΦ 𝑣))

]
Since au-intro-pre is a last-resort hint (indicated by 𝜀1), we ensure that the assumption

hint𝐺 ∗ [True] � 𝐺 is preferred. After applying au-intro-pre, the proof search strategy

tries to establish AUpre. This will directly �nd au-intro-go, and enact au-intro.

The collection of these hints gives precisely the required behavior. By introducing

a new construct AUpre and giving above hints, we are quite literally ‘programming the

proof search’ to act according to our wishes. A similar approach works for performing

Löb induction, where we use two intermediate goals löbpre (𝐺) , 𝐺 and löbpost (𝐺) , 𝐺 ,
and the following hints:

(rec 𝑓 𝑥 := 𝑒) performs recursion, i.e., 𝑓 ∈ FV(𝑒)
𝜀1 ∗

[
löbpre

(
wp ((rec 𝑓 𝑥 := 𝑒) 𝑣) {Φ}

) ]
� wp ((rec 𝑓 𝑥 := 𝑒) 𝑣) {Φ}

Δ, löbpre (𝐺) →∼ctx
[
(⊲�(Δ −∗ 𝐺)) −∗ löbpost (𝐺)

]
𝜀0 ∗

[
⊲wp 𝑒 [(rec 𝑓 𝑥 := 𝑒)/𝑓 ] [𝑣/𝑥] {Φ}

]
� löbpost

(
wp ((rec 𝑓 𝑥 := 𝑒) 𝑣) {Φ}

)
By delegating Löb induction to the löbpre and löbpost constructs, we can easily reuse the

procedure for re�nement judgments. We simply need to add variants of the �rst and third
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hint for the re�nement judgment. The second hint we can reuse because it is generic

in the goal 𝐺 . This modularity is useful for the full-blown version of automatic Löb

induction in the artifact (Mulder and Krebbers, 2023a). The full-blown version generalizes

over variables and thus has a more sophisticated version of the second hint.

3.4.5 Overview of the Proof Search Strategy

We now give a more formal description of the proof search strategy that underpins

Diaframe 2.0. It acts on goals of the form Δ ` 𝐺 , where𝐺 is de�ned roughly according to

the following grammar:

atoms 𝐴 ::= . . .

transformers T ::= . . .

left-goals 𝐿 ::= p𝜙q | 𝐴 | 𝐿 ∗ 𝐿 | ∃𝑥 . 𝐿
unstructureds 𝑈 ::= p𝜙q | 𝐴 | 𝑈 ∗𝑈 | ∃𝑥 . 𝐿 | ∀𝑥 . 𝑈 | 𝐿 −∗ 𝑈 | |VE1 E2𝑈

goals 𝐺 ::= ∀𝑥 . 𝐺 | 𝑈 −∗ 𝐺 | 𝐴 | |VE1 E2 ∃®𝑥 . 𝐿 ∗𝐺 | T

To prove Δ ` 𝐺 , the strategy proceeds by case analysis on 𝐺 :

1. 𝐺 = ∀𝑥 . 𝐺 ′. Introduce variable 𝑥 and continue.

2. 𝐺 = 𝑈 −∗ 𝐺 ′. Introduce 𝑈 into the context and similar to Diaframe, ‘clean’ it. That

is, eliminate existentials, disjunctions and separating conjunctions.

3. 𝐺 = 𝐴. Look for an abduction hint from some 𝐻 ∈ Δ to 𝐴. That is, �nd a side-

condition 𝐺 ′ such that 𝐻 ∗ [𝐺 ′] � 𝐴. Continue with Δ \ 𝐻 ` 𝐺 ′.
4. 𝐺 = |VE1 E2 ∃®𝑥 . 𝐿 ∗𝐺 ′. Use the existing procedure from Chapter 2 to solve these

goals. Roughly, that is, �rst, use associativity of ∗ to obtain either:

(a) 𝐿 = p𝜙q. Prove ∃®𝑥 . 𝜙 , then continue with proving 𝐺 ′.

(b) 𝐿 = 𝐴. Now, �nd a bi-abduction hint from some 𝐻 ∈ Δ to 𝐴. That is, �nd a

side-condition 𝐿′ and residue𝑈 such that ∀®𝑦. 𝐻 ∗ 𝐿′ ` |VE3 E2 ∃®𝑥 . 𝐴 ∗𝑈 . Our

new goal will be of shape Δ \ 𝐻 ` |VE1 E3 ∃®𝑦. 𝐿′ ∗ (∀®𝑥 . 𝑈 −∗ 𝐺 ′), which also

�ts our grammar.

5. 𝐺 = T . Try the following, in order:

(a) Find𝐻 ∈ Δ and T ′ such that𝐻,T →∼hyp [T ′]. Continue with goal Δ\𝐻 ` T ′.
(b) Otherwise, �nd 𝐺 ′ such that Δ,T →∼ctx [𝐺 ′]. Continue with goal Δ ` 𝐺 ′.

Diaframe vs Diaframe 2.0. There are two main reasons why Diaframe’s bi-abduction

hints cannot express the proof search strategies from § 3.2.3 and 3.3.3. Firstly, context

transformer hints (Item (5-b)) have a shape that is simply incompatible with Item (4-b).

Secondly, the side-conditions of abduction hints are in 𝐺 , while those of bi-abduction

hints are in 𝐿. Goals 𝐺 are strictly more �exible than left-goals 𝐿, giving abduction hints

the additional power to express proof strategies for program speci�cation styles. One

could attempt to extend the grammar of 𝐿, but then we risk ending up in a goal of shape

(∀𝑥 . 𝐺1) ∗ (∀𝑦. 𝐺2) after Item (4-b), causing the proof search to get stuck.
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Table 3.1: Data on examples with logical atomicity, in comparison with Voila. Rows

correspond to �les in the supplementary artifact (Mulder and Krebbers, 2023a). Columns

contain information on lines of implementation, total amount of lines, average veri�cation

time in minutes:seconds, and lines of proof burden, also for Voila. Veri�cation time

includes both running the proof search strategy and checking the proof in Coq.

name impl total time proof Voila total Voila proof

bag stack 30 142 1:13 53 220 74

bounded counter 20 61 0:32 6 86 19

cas counter 20 46 0:24 0 98 24

fork join 14 43 0:21 0 64 17

fork join client 13 46 0:20 0 134 35

inc dec counter 22 52 0:31 0 111 26

spin lock 13 56 0:16 0 71 17

ticket lock 17 74 1:12 4 112 27

ticket lock client 7 29 0:39 0 91 17

total 156 549 5:28 63 987 246

3.5 Evaluation

We evaluate our proof automation on four sets of benchmarks. To evaluate Design goal

#1, we compare to Voila (Wolf et al., 2021)—a proof outline checker for logical atomicity

(§3.5.1). We discuss the di�erences in the underpinned logics, and the performance and

proof burden of the proof automation of both tools. To evaluate Design goal #2, we redo

some of the trickier examples in the Iris literature: an elimination stack, and Harris et al.

(2002)’s RDCSS (restricted double-compare single-swap) (§3.5.2). Besides reverifying

existing examples, we use our results to verify logical atomicity of the Michael-Scott

queue (Michael and Scott, 1996) (§3.5.3). This queue is known to be linearizable—Vindum

and Birkedal (2021) proved contextual re�nement with ReLoC, and we take inspiration

from their approach—but we are not aware of a mechanized proof of logical atomicity.

For re�nements in concurrent separation logic there exist, to the best of our knowledge,

no existing semi-automated tools. We thus compare to existing interactive proofs done

in ReLoC (§3.5.4).

3.5.1 Comparison to Logical Atomicity Proofs in Voila

We verify the 9 examples from Voila’s evaluation suite in Diaframe 2.0. Details can be

found in Table 3.1. There are some di�erences between Voila and Diaframe 2.0 that are

important to point out. Voila is based on the TaDa logic (da Rocha Pinto et al., 2014; da

Rocha Pinto, 2016), whose notion of logical atomicity inspired that of Iris, but is slightly

di�erent. To give a speci�cation for a logically atomic triple in TaDa, one needs to de�ne

an abstraction around the resources, in the form of a region (akin to an invariant in Iris).

This is not always required in Iris, which makes our speci�cations of e.g., cas counter

and inc dec counter a lot shorter.

Another di�erence is that Diaframe 2.0 is foundational (built in a proof assistant),
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while Voila is non-foundational. The main di�erence between foundational and non-

foundational veri�cation lies in the size of the Trusted Computing Base (TCB). Non-

foundational tools typically have a large TCB, which may include external solvers, the

bespoke program logic that underpins the tool, and the implementation of the proof

automation. Foundational tools typically have a small TCB: just the de�nition of the

operational semantics and the kernel of the proof assistant. The program logic and the

proof automation need not be trusted.

Finally, Voila is a proof outline checker, requiring the user to specify key steps in the

proof of a logically atomic triple. In particular, one needs to specify when regions or

atomic speci�cations need to be used, and when the linearization point happens. This

o�ers an improvement over fully interactive proofs, but does not achieve the degree of

automation Diaframe 2.0 provides—for all but 2 examples, we can �nd the linearization

point automatically. Wolf et al. (2021) explicitly do not attempt to build an automated

veri�er for logical atomicity, about which they remark:

Automated veri�ers, on the other hand, signi�cantly reduce the proof ef-

fort, but compromise on expressiveness and require substantial development

e�ort, especially, to devise custom proof search algorithms. It is in principle

possible to increase the automation of proof checkers by developing proof

tactics, or to increase the expressiveness of automated veri�ers by developing

stronger custom proof search algorithms. However, such developments are

too costly for the vast majority of program logics, which serve mostly a

scienti�c or educational purpose.

We summarize aggregated data from Table 3.1. On average, Diaframe 2.0 has ca. 0.4

lines of proof burden per line of implementation (63 lines of proof burden on 156 lines

of implementation), while Voila has, in our count, 1.7 lines of proof burden per line of

implementation.
5
The total proof burden over these 9 examples is reduced by a factor of

about 4, from 246 lines in Voila to 63 lines in Diaframe 2.0. For 6 out of the 9 examples,

the logically atomic triples can be veri�ed by Diaframe 2.0 without any help from the

user. This shows we achieve Design goal # 1: full automation for ‘simple’ proofs of

logical atomicity. The other three examples require some help for arithmetic modulo

𝑛 (bounded counter), case distinctions which need to be performed at a speci�c place

in the proof (ticket lock and bag stack), or custom hints with non-automatable proofs

(bag stack).

3.5.2 Comparison toComplex Interactive Proofs of LogicalAtom-
icity in Iris

To ensure Diaframe 2.0 is usable in interactive proofs of ‘complex’ programs (Design goal

#2), we partially automate two existing interactive proofs in Iris. The results are shown

in Table 3.2. Since these examples are challenging—both feature ‘helping’, where the

linearization point is delegated to another thread—full proof automation is not achieved.

The proof burden was reduced by a factor of 4. We found that some intermediate lemmas

5
Wolf et al. (2021) report 0.8 line of proof annotation per line of code in Voila, which Diaframe 2.0 still

improves on by a factor 2. We consider lines with explicit calls to open/close regions, and explicit uses of atomic

speci�cations as proof work in Voila. It is unclear what counting metric is used by Wolf et al. (2021).
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Table 3.2: Data on examples with logical atomicity, in comparison with Iris Proof Mode

(IPM) proofs.

name impl total time proof IPM total IPM proof

rdcss 50 422 6:42 63 689 294

elimination stack 50 239 4:56 58 375 180

msc queue 51 427 8:30 168

were no longer necessary, as their e�ects were applied automatically. Most of the ‘easier’

parts of the veri�cations of these programs (such as recursive calls on a failing CAS) could

be completely discharged by Diaframe 2.0. This allowed us to focus on the interesting part

of the veri�cation. In these examples, we have seen 4 patterns where the proof automation

may need assistance: (a) linearization points for operations that do not logically alter

the state, (b) case distinctions whose necessity requires ‘foresight’/human intuition, (c)

pure side-conditions that are too hard for Diaframe, (d) mutation rules of recursive data

structures. Items (c) and (d) can sometimes be overcome through appropriate hints in

Diaframe. We leave good proof automation for Items (a) and (b) for future work. Vafeiadis

(2010) also points out that Item (a) is very di�cult in the context of CAVE.

3.5.3 Experiences Verifying Logical Atomicity of a Complex Data
Structure: the Michael–Scott Queue

To evaluate the applicability of our proof automation on new proofs, we verify logical

atomicity of the Michael-Scott queue. To our knowledge, this is a novel result. Contex-

tual re�nement is established by Vindum and Birkedal (2021), but logical atomicity is

stronger and implies contextual re�nement (we have worked this out in more detail in

our artifact (Mulder and Krebbers, 2023a)). Our proof reuses some of their techniques

(the persistent points-to predicate), but represents the queue data structure invariant

somewhat di�erently, thereby making it more amenable to automation. After establishing

hints and pure automation for this data structure, most of the separation-logic reasoning

can be dealt with automatically. The remaining proof burden consists of dealing with

prophecy variables (Jung et al., 2020), for which our automation has partial support,

and establishing pure facts outside of the reach of our automation—for this example,

reasoning about lists without duplicates.

The queue data structure invariant we use di�ers from the invariant used by Vindum

and Birkedal (2021) mainly in the way we represent the linked list of queued nodes.

In this list of nodes, only the next-node pointer of the last node is mutable. For our

invariant, we de�ne a resource that contains all these next-node pointers, including the

last one, while Vindum and Birkedal (2021) have a separate resource for the last node.

We add appropriate hints to extract from our linked-list resource the points-to resources

for arbitrary nodes in the list. This approach is more amenable for automation, since

obtaining the points-to resource for a next-node pointer is always done in the same way:

by using our linked list resource. The proof by Vindum and Birkedal (2021) instead needs

to di�erentiate between last and non-last nodes to obtain this resource.

Challenging veri�cations like this will usually not be successful the �rst time, and
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some amount of time must be spent �guring out the reason for failure. Three typical

problems occur during failed veri�cations: (a) faulty speci�cations or invariants (b) miss-

ing or faulty hints for ghost resources or recursive data structures (c) the default proof

search strategy is not su�cient. The general approach for debugging these problems is

to let Diaframe 2.0 perform a �xed number of automation steps, instead of letting it run

until it gets stuck. This allows the user to determine when the strategy takes a wrong

turn, and act accordingly: change invariants, add hints, or manually perform a part of

the proof. Diaframe 2.0 provides some tools for debugging a failing type class search for

hints, by letting the user specify from which hypothesis a hint should be found. This is

described in more detail in the artifact’s README �le (Mulder and Krebbers, 2023a), under

solveStep with.

3.5.4 Comparison to Interactive Re�nement Proofs in ReLoC

We evaluate our automation on 10 out of the 13 concrete examples from the ReLoC

repository. The 3 remaining examples feature ‘helping’, which is currently unsupported

by our re�nement proof automation.
6
Statistics on the examples can be found in Table 3.3.

The proof of ticket lock - spin lock di�ers slightly from the original proof: instead of

relying on ReLoC’s logically atomic relational speci�cations (Frumin et al., 2018), we use

Iris’s regular logically atomic speci�cations (§3.3) for the same e�ect.
7

We summarize some aggregated data from Table 3.3. On average, the proof size is

reduced by a factor of 7 (179 vs 1355 lines of proof burden), coming down to 0.6 line

of proof burden per line of implementation. For the largest re�nement example, which

proves that the Treiber stack contextually re�nes a coarse-grained stack, we still reduce

the proof size by over a factor of 3. Assistance from the user is required in the same cases

as those discussed in §3.5.2. Additionally, it may be necessary to manually establish an

invariant like in §3.2, or to manually perform right-hand side execution. A tactic iStepR

is available for this last case.

3.6 Related Work

Viper. Viper (Müller et al., 2016) is a non-foundational tool for automated veri�cation

using separation logic. Viper provides a common veri�cation language, which is used as a

backend of veri�cation tools for a number of di�erent program speci�cation styles. Aside

from functional correctness, Viper is used for logical atomicity in the TaDA logic (Wolf

et al., 2021) (called Voila) and the security condition non-interference (Eilers et al., 2021).

An extensive comparison between Voila and our automation for logical atomicity can be

found in §3.5.1. In summary, we show an average proof size reduction by a factor 4, and

6
We think it would be di�cult to adequately extend Diaframe to support helping in ReLoC. Helping in ReLoC

is supported by splitting a re�nement proof obligation (Vindum et al., 2022) into a resource for the right-hand

side, and a proof obligation for the left-hand side. One completes the re�nement proof by symbolically executing

the right-hand side resource at the appropriate moment. Since such symbolic execution is not goal-directed, it

is harder to automate with Diaframe.

7
We believe it is folklore that logically atomic triples can be used in re�nement proofs, but have not seen

it worked out. In the implementation, this requires adding a slightly altered version of atomic updates, and

accompanying hints.
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Table 3.3: Statistics on proof automation for ReLoC. Each row contains the name of

the veri�ed example, lines of implementation, total amount of lines, veri�cation time in

minutes:seconds, and lines of proof burden—also for the original, interactively constructed

version of the example.

name impl total time proof
interactive

total

interactive

proof

bit 10 33 0:04 3 44 14

cell 27 64 0:31 4 128 68

coin�ip 48 118 1:56 25 319 230

counter 19 65 0:25 5 225 63

lateearlychoice 26 88 0:22 16 129 62

namegen 9 70 0:11 26 112 68

Treiber stack - stack with lock 46 136 1:02 36 185 124

symbol 28 112 1:38 27 376 234

ticket lock - spin lock 17 85 0:59 7 266 120

various 54 158 3:34 30 582 372

total 284 929 10:42 179 2366 1355

we support more complicated examples (RDCCS, elimination stack, and the Michael-Scott

queue).

With regard to extensibility, Viper has the same goal as Diaframe 2.0—to provide a

common veri�cation backend that can handle multiple speci�cation styles. There are

some notable di�erences that make the two approaches di�cult to compare in detail.

First, Viper targets non-foundational veri�cation instead of foundational veri�cation in a

proof assistant (see §3.5.1 for a discussion on the di�erences). Second, the embedding

into Viper’s veri�cation language is a syntactic program transformation that is performed

before veri�cation, while Diaframe 2.0 operates directly on program speci�cations during

the veri�cation. Third, Viper uses separation logic based on implicit dynamic frames

(Parkinson and Summers, 2011), which is di�erent from Iris’s separation logic.

Automated linearizability checkers. CAVE (Vafeiadis, 2010; Henzinger et al., 2013),

Poling (Zhu et al., 2015) and Line-up (Burckhardt et al., 2010) are automated non-

foundational tools for establishing linearizability. CAVE uses shape analysis to �nd

linearization points, and Line-up uses model checking to refute linearizability. Poling ex-

tends CAVEwith support for external linearization points. These tools use the trace-based

formulation of linearizability (Herlihy and Wing, 1990), which is less compositional than

contextual re�nement and logical atomicity. Poling does not support future-dependent

linearization points, which are present in algorithms such as RDCSS and the Michael-

Scott queue, and Line-up does not support non-deterministic concurrent data structures.

The advantage of restricting supported target programs is that these tools do not need

much user assistance.

Veri�ed concurrent search data structures. Krishna et al. (2020, 2021) developmeth-

ods to prove logical atomicity of a particular class of concurrent algorithms: concurrent

search structures. Their key idea is to subdivide the veri�cation of a data structure into

two parts: the veri�cation of a template algorithm and verifying that a data structure is an
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instance of the template. The veri�cation of the template algorithm is done interactively

in Iris using the Iris Proof Mode. The template-instance veri�cation is done automati-

cally using the tool GRASShopper (Piskac et al., 2014b). This work is thus only partly

foundational. To obtain a full foundational proof, it would be interesting to investigate

if our work could be used to automate the veri�cation of the instances currently done

using GRASShopper.

Plankton and Nekton. Plankton (Meyer et al., 2022, 2023b) is another recent non-

foundational tool for verifying linearizability of concurrent search structures, building on

techniques similar to Krishna et al. (2020, 2021). Plankton uses a custom separation logic

with proof automation in mind, with ‘temporal interpolation’ as a key innovation for

verifying future-dependent linearization points. This approach sacri�ces compositional

client reasoning, but achieves an astounding degree of automation: it just needs a local

‘node’ invariant to prove that a program is linearizable.

Nekton (Meyer et al., 2023a) repurposes some of Plankton’s innovations to check

proof outlines of linearizability. By sacri�cing some automation (the user has to provide

proof outlines), Nekton gains generality: instead of just targeting concurrent search

structures, it targets all programs expressible in the �ow framework (Krishna et al., 2018).

Nekton has been used to verify linearizability of the state-of-the-art FEMRS tree (Feldman

et al., 2018).

Automated veri�ers for concurrent re�nements. Civl (Hawblitzel et al., 2015;

Kragl and Qadeer, 2021) is an automated tool for establishing re�nement of concur-

rent programs. Their approach is based on establishing multiple layers of re�nement,

where each layer simpli�es and re�nes the previous layer. By employing the Boogie

veri�er Barnett et al. (2005), Civl can automatically prove these layered re�nements—

although inductive invariants and non-interference conditions need to be speci�ed by the

user. This approach has also been shown to scale to larger examples: in particular, Civl

has been used to verify a concurrent garbage collector of signi�cant size. Civl focuses on

re�nements in general, and not on linearizability in particular. Linearizability has been

established for e.g., the Treiber stack (Treiber, 1986), but not for more complex examples

such as the Michael-Scott queue.

Other logics for linearizability. Our work builds upon Iris, which consolidates prior

work on logical atomicity and re�nements in separation logic (Jacobs and Piessens, 2011;

Svendsen et al., 2013; da Rocha Pinto et al., 2014; Dreyer et al., 2010; Turon et al., 2013).

Aside from Iris, there are a number of other expressive logics for linearizability that employ

di�erent approaches to compositionality. While none of this work addresses the challenge

of automating linearizability proofs, we brie�y discuss some of this work. FCSL (Sergey

et al., 2015; Nanevski et al., 2019) is a Coq-based separation logic, where linearizability

can be established by keeping track of timestamped histories. Liang and Feng (2013) have

designed a program logic based on rely-guarantee for proving linearizability. They can

handle challenging examples (such as RDCSS), but their proofs are not mechanized in a

proof assistant. Kim et al. (2017) verify linearizability and liveness of a C implementation

of an MCS lock using the certi�ed concurrent abstraction layer framework in Coq (Gu

et al., 2015).
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3.7 Future Work

We would like to improve the usability of Diaframe 2.0. As can be seen in Figure 3.2,

variable names are automatically generated by Coq. This can make it di�cult to relate

generated Coq goals to the program subject to veri�cation. A further improvement would

be to avoid interaction with Coq altogether by using annotations in source code, akin to

auto-active veri�cation tools (Leino and Moskal, 2010). Re�nedC (Sammler et al., 2021)

demonstrates that a proof strategy in Iris can be used as a backend for a foundational

auto-active tool for functional correctness. For re�nement and logical atomicity it is

currently unclear what suitable annotations would look like.

We focused on automating the separation logic part of re�nement and logical atomicity

proofs. To automate the pure conditions that arise in the veri�cation, we use standard

solvers from Coq such as lia and set solver. It would be interesting to investigate if

recent approaches to improve pure automation in Coq could be incorporated (Ekici et al.,

2017; Besson, 2021; Czajka, 2020).

We focused on proof strategies for re�nement and logical atomicity, but we conjecture

that the generic Diaframe 2.0 strategy is more widely applicable. We would like to

instantiate it with other logics and languages. We have some initial experiments for

Similuris (Gäher et al., 2022) and 𝜆-rust (Jung et al., 2018a). Languages like Georges

et al. (2022)’s capability machines, and logics like VST (which Mansky and Du (2024)

have recently ported to the Iris Proof Mode, and also supports logical atomicity) are also

interesting targets. Finally, it would be interesting to investigate automation for recent

work by Dang et al. (2022) on logical atomicity under weak memory.

As mentioned in the evaluation (§3.5), our proof automation cannot always auto-

matically determine the required case distinctions for a proof. Additionally, we rely on

backtracking to determine linearization points. We will describe an extension of Diaframe

with better support for disjunctions in Chapter 4.
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Chapter 4

Beyond Backtracking:
Connections in Fine-Grained
Concurrent Separation Logic

4.1 Introduction

Separation logic (O’Hearn et al., 2001; Reynolds, 2002) and its successor concurrent separa-

tion logic (O’Hearn, 2007; Brookes, 2007) have shown to be invaluable to modularly verify

increasingly complicated programs that involve pointers and shared-memory concur-

rency. Already from the early days of separation logic, researchers have investigated how

separation logic could be used for automated veri�cation. The seminal work by Berdine

et al. (2005, 2006) on symbolic execution in separation logic has been instrumental in the

development of (mostly)-automated tools for proving functional correctness (Jacobs et al.,

2011; Piskac et al., 2014b; Müller et al., 2016; Oortwijn et al., 2020), including foundational

tools that are embedded and proved sound in general-purpose proof assistants (Chlipala,

2011; Sammler et al., 2021).

A particular sub�eld concerns the automated veri�cation of �ne-grained concur-

rent programs (Calcagno et al., 2007; Dinsdale-Young et al., 2017; Windsor et al., 2017).

Such programs use low-level atomic operations (such as compare-and-swap) instead of

high-level concurrency primitives (such as locks). The veri�cation of these programs is

particularly challenging because one needs to de�ne an invariant, which describes how

ownership is shared and transferred between threads, and prove this invariant holds after

every step the program takes. The invariant usually consists of a disjunction of the logical

states the program (or data structure) can be in, together with some form of ghost state

(or a protocol) to relate each disjunct to the state of the threads (Dinsdale-Young et al.,

2010). Depending on the shape of the invariant, state-of-the-art tools can automatically

verify the program. In the ideal case, logical states correspond one-to-one to the physical

states of the program (i.e., the data on the heap). For example, to verify a spin lock, the

invariant has two disjuncts that correspond to whether the lock (represented as a Boolean

on the heap) is in the locked or unlocked state.

79
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The more challenging case arises if the logical states do not correspond exactly to the

physical states of the program. An example is an atomic reference counter (ARC), such

as the one in Rust Language (2021), that keeps track of the number of readers of a shared

resource. In the veri�cation there are two logical states/disjuncts—either there exists

a positive number of readers matching up with the integer value of the ARC, or there

are no readers left and the ARC has been deallocated. In the last disjunct, there is no

corresponding physical state (i.e., points-to assertion) since the ARC has been deallocated.

State-of-the-art automated tools need user guidance to verify some of ARC’s methods

w.r.t. this challenging invariant. In Starling (Windsor et al., 2017) one needs to add an

annotation for each program statement. In Caper (Dinsdale-Young et al., 2017) one needs

to insert a no-op assert (cnt = 1 ? true : true) into the code of one method to

force the automation to perform a case split. In Diaframe (Chapter 2) one needs to fall

back to an interactive proof in this same method, to perform a case split similar to the

one in Caper.

Dealing with disjunctions 𝑃∨𝑄 in separation logic is challenging because the disjuncts

𝑃 and 𝑄 can be arbitrary formulas of separation logic. That is, they can contain ∗ and
↦→: logical operators that are not part of the native logic of automated provers based

on classical logic (e.g., SMT). Logics such as Iris go beyond that by allowing 𝑃 and 𝑄 to

also contain higher-order quanti�cation, invariants and modalities.
1
The aforementioned

tools for automated veri�cation in �ne-grained concurrent separation logic deal with

disjunctions (i.e., the logical states of the invariant) roughly as follows. Before each

program instruction, they make a case distinction on the logical states of the invariant.

Some of these cases can discharged because they lead to a contradiction with other

(ghost) resources that are owned by the thread. After symbolic execution of the program

instruction, the invariant needs to be reestablished, which is done by backtracking on

all logical states of the invariant. That is, the automation picks one of the states of the

invariant, then attempts to �nish the proof. If this fails, another state is tried until the

proof succeeds. This approach works surprisingly well for the ideal cases described above

(e.g., the spin lock), but is insu�cient for the more challenging ones (e.g., the ARC). There

are three problems:

• Debugging/cooperation with interactive proofs. It is di�cult to determine

why a proof by backtracking failed (bug in the speci�cation, bug in the program, or

the problem being too di�cult for the automation) without investigating all choices

the backtracking algorithm considered. Similarly, if a backtracking proof fails, there

is no canonical sub-goal where the user could continue with an interactive proof.

• Uninformed disjunction introduction. When proving Δ ` 𝑃 ∨𝑄 , it is often the

case that neither Δ ` 𝑃 nor Δ ` 𝑄 is true. Merely backtracking on the left/right

introduction of 𝑃 ∨𝑄 will thus never �nd a proof. Instead, one needs to perform

some case analysis �rst. For example, in our ARC example, one needs to make a

distinction on whether the reference counter had value 1 to decide if 𝑃 or𝑄 should

be introduced.

1
An additional challenge is that the standard way SMT-like solvers may approach disjunctions is by assuming

the negation of all cases, and showing a contradiction: to establish ` 𝑃 ∨𝑄 , they will try to prove ¬𝑃,¬𝑄 ` ⊥.
This approach is incompatible with intuitionistic/non-classical logics where the Law of Excluded Middle (LEM)

does not hold. Cao et al. (2017) show that LEM does not hold in advanced separation logics such as Iris.
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• Overeager disjunction elimination. To verify more complicated programs one

often uses multiple invariants simultaneously. For example, to verify an MCS

lock (Mellor-Crummey and Scott, 1991) or CLH lock (Magnusson et al., 1994),

one typically uses a separate invariant for each location/node. This may cause

up to 4 such invariants to be in scope, and it would be ine�cient to consider all

states/disjuncts (for each program instruction, there will be an exponential number

of cases). Caper uses backtracking to try to perform case analysis on the least

number of invariants, which works well for successful veri�cation attempts, but

leads to very slow times for failing veri�cation attempts Wolf et al. (2021).

The last two problems are well-known in the context of proof search in intuitionistic

logic. For instance, to show 𝑃 ∨𝑄 ` 𝑄 ∨ 𝑃 , one �rst needs to eliminate the disjunction

on the left, and only afterwards, a disjunct on the right can be chosen. In this example,

the disjunction on the left could be eagerly eliminated by a proof search procedure,

but in general, this is impossible because the disjunction could be the conclusion of a

hypothesis ∀®𝑥 . 𝑅1 → . . . → 𝑅𝑛 → 𝑃 ∨ 𝑄 . After all, there are in�nitely many ways

to instantiate ®𝑥 . Indeed, procedures for proof search in intuitionistic logic available in

proof assistants are either restricted to the propositional fragment (such as the tauto

tactic in Coq), perform blind quanti�er instantiation (such as the firstorder tactic in

Coq) or are already incomplete for trivial goals (such as the eauto tactic in Coq). An

e�cient and complete solver for �rst-order intuitionistic logic is the ileanCop automated

theorem prover (Otten, 2008), which is based on connection calculi (Waaler, 2001; Wallen,

1990; Otten and Kreitz, 1995). Intuitively, the idea behind these calculi is to establish a

connection between parts of a hypothesis and the goal. This connection makes sure that

the correct disjunction (on the left) is eliminated, and the correct disjunct (on the right)

is introduced, thereby addressing the two problems we sketched.

The completeness of solvers based on connection calculus allows them to take an

all-or-nothing approach: either the proof is �nished, the goal is declared unprovable, or

proof search does not terminate. Such an approach becomes untenable in more bespoke

logics such as concurrent separation logic. However, useful proof automation for these

logics does exist (Chlipala, 2011; Sammler et al., 2021), and usually relies on a tailor-made,

backward-chaining (Prolog-style) proof search strategy. Such strategies can be applied in

a step-wise fashion, where each step replaces an entailment by one or multiple simpler

entailments. To do so, these strategies need a way to detect what hypotheses are relevant

to what (part of the) goal. This is what we are looking for: a set of rules to determine

appropriate disjunctions to eliminate and disjuncts to introduce.

To design such a set of rules, we take inspiration from connection calculus, which

results in a simple calculus with connections for separation logics. Our approach is not

tied to a speci�c model of separation logic (e.g., Iris), we support any bunched implications

(BI) logic (O’Hearn and Pym, 1999; Pym, 2002). We implement and evaluate the practicality

of our calculus in the Diaframe automation tool (Chapter 2) for the Iris framework of

higher-order concurrent separation logic in Coq (Jung et al., 2015, 2016; Krebbers et al.,

2017b; Jung et al., 2018b; Krebbers et al., 2017a, 2018). Our simple calculus does not

yield a complete proof search procedure, but our evaluation suggests that it signi�cantly

improves on the state-of-the-art on automated veri�cation of practical examples in �ne-

grained concurrent separation logic—also for examples with coarse-grained concurrency.

The key strength of our calculus is that it can be extended with many features outside
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of �rst-order logic, such as Iris’s modalities, higher-order quanti�cation, ghost state

mechanisms, and invariant assertions. For this purpose, theoretical completeness is not

essential and simplicity is preferable.

We base our calculus on a focused version of intuitionistic multi-succedent calculus

by Dragalin (1988). Focusing (Andreoli, 1992; Simmons, 2014; Liang and Miller, 2009)

addresses the issue of rule non-permutability by dividing the proof search into two

alternating phases: the inversion phase in which invertible rules are eagerly applied, and

the focusing phase which groups sequences of non-invertible rules. This approach limits

backtracking to the choice of a connection in the focusing phase, thereby signi�cantly

reducing the search space, and in turn increasing the e�ciency and predictability of the

proof automation. The multi-succedent aspect of our calculus allows it to delay choosing

which disjunct to introduce.

A key feature of concurrent separation logics such as Iris is their support for ghost

state, which is used to relate the logical state of the invariant to the state of the individual

threads. Crucially, after each program instruction, the ghost state needs to be updated to

match up with the e�ect of the instruction. There are often multiple ways in which the

ghost state can be updated. This is a disjunctive pattern that in�uences the connections

we should consider. Since Iris provides various forms of ghost theories, we do not want to

hard-wire their rules into our calculus. We thus make our calculus parametric in ground

connections to describe “domain-speci�c” rules for the atoms. This mechanism is suitable

to, but not limited to, describe the rules of Iris’s ghost theories.

Outline and contributions. Our contributions are as follows:

• We present our approach on a minimal calculus for regular (non-separating) propo-

sitional logic (§4.3). This calculus is based on a focused version of intuitionistic

multi-succedent calculus by Dragalin (1988), incorporating ideas from focusing

and connection calculi.

• We extend our approach to propositional separation logic (§ 4.4). To deal with

the substructural aspects of separation logic, we combine our calculus with the

goal-directed approach to handle separating conjunctions from Re�nedC (Sammler

et al., 2021).

• We extend our approach to the higher-order concurrent separation logic Iris by

integrating it into the Diaframe proof automation tool (§4.5). To make our calculus

parametric in domain-speci�c theories (such as those for ghost state), we combine

our notion of ground connections with Diaframe’s notion of bi-abduction hints.

• We implement our approach in the proof assistant Coq (Mulder et al., 2023a)

(§4.6). The implementation contains machine-checked soundness proofs of both the

minimal version for propositional logic and the full-blown version. The full-blown

version provides various tactics that can execute the procedure automatically.

• We evaluate our implementation on 24 examples (§ 4.7). We can verify 14/24

examples fully automatically, and reduce the overall proof burden by 33% compared

to the original Diaframe. We also compare to the SMT-based veri�cation tool Caper

(Dinsdale-Young et al., 2017), which supports 15/24 examples, and can do 13/24

examples fully automatically.
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We start by describing the problem in the context of two versions of the aforemen-

tioned ARC example (§4.2), and conclude with a description of related work (§4.8).

4.2 Motivating Examples

We show challenging uses of disjunctions that occur when verifying an Atomic Reference

Counter (ARC) inspired by Rust Language (2021). ARCs are employed to safely give

multiple threads read access to a resource, and to recover write access when all threads

are done. The ARC we consider accomplishes this by keeping a thread-safe tally of the

number of active readers. ARCs usually come with at least three methods: mk arc creates

a new ARC for (initially) a single reader, clone registers an additional reader thereby

‘duplicating’ read access, while drop deregisters a reader. The drop method also returns

whether the number of active readers is now zero, and gives back write access if that is

the case. Precisely this case distinction is problematic for automatic veri�cation.

We verify two ARCs: a version that leaves deallocation to a garbage collector (§4.2.1),

and a more challenging version that performs an explicit deallocation on the last drop

(§4.2.2). In prior work (Dinsdale-Young et al. (2017) and Chapter 2), veri�cation of the

drop method requires user guidance, but our approach can verify it fully automatically.

For both versions of ARC, we show the precise subgoal in the drop veri�cation at which

prior work used to get stuck.

4.2.1 ARCWithout Deallocation

An implementation of an ARC in Iris’s default programming language HeapLang (Jung

et al., 2016) is given in lines 2–9 of Figure 4.1. We represent an ARC using a location that

counts the number of active readers. To create a new ARC, we return a new location that

points to 1, indicating there is a single reader. To clone the ARC, we use fetch-and-add

(FAA) to atomically increment the reference count by 1. Dually, to drop an ARC, we use

FAA to atomically decrement the reference count by 1. The FAA method will return the

old value of the location. We are the last reader precisely when the old value was 1, hence
drop returns the result of this comparison. Note that dropping the last reader does not

deallocate the location: we rely on garbage collection to do so.

The speci�cation of this ARC is given in lines 15–26 of Figure 4.1. Each method is

speci�ed using a Hoare-style triple SPEC {𝐿} 𝑒 {®𝑦, RET 𝑣 ; 𝑈 }. Such a triple indicates

that if one owns resources satisfying 𝐿, evaluating 𝑒 is safe, and if 𝑒 terminates, there exist

instances of the logical variables ®𝑦 so that the return value is precisely 𝑣 , and one owns

resources satisfying 𝑈 . (Both 𝑣 and 𝑈 may mention ®𝑦.) The speci�cations in Figure 4.1

mention resources is arc 𝛾 𝑣 , representing the knowledge that value 𝑣 is an ARC with

ghost name 𝛾 , and resources token 𝑃 𝛾 , representing read access to shareable assertion 𝑃 ,

governed by an ARC with name 𝛾 . The ghost name 𝛾 is used to tie the token 𝑃 𝛾 to a

speci�c ARC. The de�nition of is arc will be discussed shortly.

The entire speci�cation of this ARC is parameterized by the shareable assertion 𝑃 ,

as can be seen in line 1. Shareable assertions are represented as fractional permissions

(Boyland, 2003). In Iris these are well-behaved predicates 𝑃 : Q𝑝 → iProp. Here iProp is

the type of Iris assertions, and Q𝑝 , {𝑞 ∈ Q | 𝑞 > 0}. We call 𝑃 well-behaved (Fractional
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Context (P : Qp → iProp) {HP : Fractional P}.1

Definition mk arc : val :=2

𝜆: <>, ref #1.3

Definition clone : val :=4

𝜆: "a", FAA "a" #1;; #().5

Definition drop : val :=6

𝜆: "a",7

let: "old val" := FAA "a" #(-1) in8

("old val" = #1).9

Definition arc inv (𝛾 : gname) (l : loc) : iProp :=10

∃ (n : nat), l ↦→ #n ∗ ((pn = 0q ∗ no tokens P 𝛾)11

∨ (p0 < nq ∗ token counter P 𝛾 (Pos.of nat n))).12

Definition is arc (𝛾 : gname) (v : val) : iProp :=13

∃ (l : loc), pv = #lq ∗ inv N (arc inv 𝛾 l).14

Program Instance mk arc spec :15

SPEC {{ P 1 }}16

mk arc #()17

{{ (v : val) (𝛾 : gname), RET v; is arc 𝛾 v ∗ token P 𝛾 }}.18

Program Instance clone arc spec (𝛾 : gname) (v : val) :19

SPEC {{ token P 𝛾 ∗ is arc 𝛾 v }}20

clone v21

{{ RET #(); token P 𝛾 ∗ token P 𝛾 }}.22

Program Instance drop arc spec (𝛾 : gname) (v : val) :23

SPEC {{ token P 𝛾 ∗ is arc 𝛾 v }}24

drop v25

{{ (b : bool), RET #b; (pb = trueq ∗ P 1) ∨ pb = falseq }}.26

Figure 4.1: Automatic veri�cation of an ARC without deallocation

in Coq) if 𝑃 𝑞1 ∗ 𝑃 𝑞2 a` 𝑃 (𝑞1 + 𝑞2) for all 𝑞1 and 𝑞2. The resource 𝑃 1 denotes write

access, while 𝑃 𝑞 with 0 < 𝑞 < 1 denotes read access. Read access 𝑃 𝑞 can be obtained

from token 𝑃 𝛾 resources (see token-access in Figure 4.2).

Let us now explain the speci�cations. The speci�cation for mk arc requires one to

give up write access 𝑃 1, after which the function returns a ghost name 𝛾 and value 𝑣 for

which we learn is arc 𝛾 𝑣 , and additionally obtain a read access token 𝑃 𝛾 . Tokens can

be duplicated with clone: it requires one token 𝑃 𝛾 , but returns two. Finally, tokens can

be destroyed with drop, which returns a Boolean. Only if this Boolean is true (in case we

are the last reader) do we recover write access 𝑃 1.

Both clone and drop can be called concurrently on a given ARC, meaning that multiple

threads can mutate the location storing the reference count. In separation logic, the

maps-to resource ℓ ↦→ 𝑣 represents the right to mutate a location ℓ . This is an exclusive

resource: only one thread can hold it. However, in the case of ARC, we want to share

this resource between multiple threads. To do so, we employ Iris’s invariants mechanism.

Iris’s invariant assertion 𝐿 represents the knowledge that resources satisfying 𝐿 hold

invariantly. Invariant assertions are duplicable (i.e., 𝐿 a` 𝐿 ∗ 𝐿 ), so unlike maps-to

resources, they can be shared between threads. The sharing via an invariant comes at a
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token-allocate

𝑃 1 ` |V∃𝛾 . counter 𝑃 𝛾 1 ∗ token 𝑃 𝛾

token-deallocate

counter 𝑃 𝛾 1 ∗ token 𝑃 𝛾 ` |V (no tokens 𝑃 𝛾 ∗ 𝑃 1)

token-mutate-incr

counter 𝑃 𝛾 𝑝 ` |V (counter 𝑃 𝛾 (𝑝 + 1) ∗ token 𝑃 𝛾)

token-interact

no tokens 𝑃 𝛾 ∗ token 𝑃 𝛾 ` ⊥
token-access

token 𝑃 𝛾 ` ∃𝑞. 𝑃 𝑞 ∗ (𝑃 𝑞 −∗ token 𝑃 𝛾)

token-mutate-decr

𝑝 > 1

counter 𝑃 𝛾 𝑝 ∗ token 𝑃 𝛾 ` |Vcounter 𝑃 𝛾 (𝑝 − 1)

Figure 4.2: The rules for the ‘token’ ghost theory.

cost—resources 𝐿 inside an invariant 𝐿 can be accessed only during atomic operations,

such as a load or an FAA instruction. After the operation �nishes, we must show that

the invariant still holds. This is shown by Iris’s invariant accessing rule (simpli�ed for

presentation purposes):
2

{𝐿 ∗ 𝑅} 𝑒 {𝐿 ∗𝑄} atomic 𝑒{
𝐿 ∗ 𝑅

}
𝑒 {𝑄}

Lines 10–14 contains the invariant we use to verify our ARC. We de�ne a value 𝑣 to be

is arc if it is a location ℓ , whose value is governed by an invariant (inv N in Coq). The

resource arc inv inside the invariant states that location ℓ points to a natural number

𝑛, i.e., ℓ ↦→ 𝑛. Additionally, depending on whether 𝑛 = 0, the invariant contains the
resource no tokens 𝑃 𝛾 or counter 𝑃 𝛾 𝑛. (The notation p𝜙q denotes the embedding

of Coq proposition 𝜙 in Iris’s separation logic.)

The no tokens 𝑃 𝛾 , counter 𝑃 𝛾 𝑛, and token 𝑃 𝛾 resources, are instances of ghost

state—non-physical resources that can express protocols. Besides their use for ARC,

these resources are also used to verify other data structures (e.g., readers-writer locks).

These resources should be seen as atoms of the logic, and are interpreted using an

appropriate ghost theory in Iris. What is important is that they satisfy the rules in

Figure 4.2. Intuitively, the counter 𝑃 𝛾 𝑛 resource states that there are exactly 𝑛 > 0
copies of token 𝑃 𝛾 , while no tokens 𝑃 𝛾 states that no token 𝑃 𝛾 resources exist. Most

of these rules mention Iris’s update modality |V. This modality can be eliminated at

every program step, and can be ignored for our purposes. During the veri�cation of

mk arc, the token-allocate rule is used to allocate a fresh 𝛾 for which the counter 𝑃 𝛾 1

2
Invariant 𝐿

N
carry a namespace N. The namespace is used to ensure that invariants cannot be accessed

twice, which would be unsound. Since Iris’s invariants are impredicative Svendsen and Birkedal (2014), one

only obtains the resources 𝐿 under a later modality, i.e., ⊲𝐿. These technicalities require additional bookkeeping

but are orthogonal to disjunctions.
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resource is put in the invariant, and the token 𝑃 𝛾 resource is returned. The veri�cation

of clone uses token-interact to establish that the 𝑛 = 0 disjunct of the invariant is

contradictory. After incrementing the stored value to 𝑛 + 1, token-mutate-incr is used

to create an additional token 𝑃 𝛾 . The veri�cation of mk arc and clone poses no problems

for state-of-the-art tools like Caper (Dinsdale-Young et al., 2017) and Diaframe (Chapter 2).

The problem lies with drop, where both tools require guidance from the user. With our

approach, drop can now be veri�ed completely automatically.

Informed disjunction introduction in the veri�cation of drop. Let us consider

what happens during the veri�cation of drop. When we execute the FAA instruction, we

access our invariant to obtain some 𝑛 with ℓ ↦→ 𝑛. Similar to the proof of clone, the

rule token-interact states that the 𝑛 = 0 disjunct in our invariant is contradictory, so

we only need to consider the second clause, i.e., that 0 < 𝑛 and additionally we have

counter 𝑃 𝛾 𝑛. After symbolic execution of FAA, we have ℓ ↦→ (𝑛 − 1) and need to

reestablish the invariant. It is easy to reestablish the �rst separating conjunct of the

invariant: we just need to relinquish the ℓ ↦→ (𝑛 − 1) resource. Reestablishing the second
part of the invariant requires us to prove the following separation logic entailment:

problem-gc-arc-drop

p𝑛 > 0q, counter 𝑃 𝛾 𝑛, token 𝑃 𝛾 ` |V
( (
p𝑛 − 1 = 0q ∗ no tokens 𝑃 𝛾

)
∨

(
p0 < 𝑛 − 1q ∗ counter 𝑃 𝛾 (𝑛 − 1)

) ) ∗ 𝑅
The disjunction originates from the invariant de�nition on line 11–12 in Figure 4.1. The

∗𝑅 represents the veri�cation of the remaining body of drop:3 resources not required for

restoring the invariant may be needed in this remaining veri�cation. Indeed, to verify

the remaining body we need 𝑃 1 whenever drop returns true, and we can only obtain 𝑃 1
with token-deallocate.

Proving the disjunction in problem-gc-arc-drop is challenging—with the current

proof context, neither disjunct is provable. Both Caper and Diaframe try to backtrack on

the choice of disjunct, but backtracking is hopeless—a correct proof needs to perform a

case analysis on whether 𝑛 = 1. In other words, it should consider whether we are the

last reader, or there are more readers left. If 𝑛 = 1, the �rst disjunct is provable, while if
𝑛 ≠ 1, the second disjunct is provable. Our approach automatically detects the need for

this case split by the presence of a ground connection from Diaframe’s dummy hypothesis

𝜀1 , > to the pure guard p𝑛 − 1 = 0q (§4.5.3).

4.2.2 ARC with Explicit Deallocation

The problematic disjunction in the previous subsection had a speci�c shape: (p𝜙q∗𝐿1)∨𝐿2,
i.e., the left disjunct is guarded by a pure condition. One could imagine an ad-hoc approach

that only handles disjunctions guarded by pure conditions, but other proofs involve

disjunctions where the required case analysis is not this apparent from the syntax. We

demonstrate this with a version of the ARC where the location is deallocated when the

last reader is dropped.

The changes in the implementation and veri�cation of the modi�ed ARC can be

found in Figure 4.3. The mk arc and clone methods have the same implementation and

3
To be precise, 𝑅 , wp (#𝑛 = #1) {𝑣. ∃(𝑏 : B) . p𝑣 = #𝑏q ∗ ( (p𝑏 = trueq ∗ 𝑃 1) ∨ p𝑏 = falseq) }.
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Definition drop free : val :=1

𝜆: "a",2

let: "old val" := FAA "a" #(-1) in3

if: "old val" = #1 then4

Free "a";; #true5

else6

#false.7

Definition arc inv free (𝛾 : gname) (l : loc) : iProp :=8

no tokens P 𝛾 ∨ (∃ p : positive, l ↦→ #(Zpos p) ∗ token counter P 𝛾 p).9

Definition is arc free (𝛾 : gname) (v : val) : iProp :=10

∃ (l : loc), pv = #lq ∗ inv N (arc inv free 𝛾 l).11

Program Instance drop arc free spec (𝛾 : gname) (v : val) :12

SPEC {{ token P 𝛾 ∗ is arc free 𝛾 v }}13

drop v14

{{ (b : bool), RET #b; (pb = trueq ∗ P 1) ∨ pb = falseq }}.15

Figure 4.3: Automatic veri�cation of an ARC with explicit deallocation.

speci�cation, and are thus omitted. The di�erence lies in the implementation of drop,

which deallocates the location if called with the last reader. In the logic, symbolic

execution of Free will consume the maps-to resource ℓ ↦→ 𝑛, after which this resource

can no longer appear in the invariant. Accordingly, the invariant arc inv free in line 8

now features a top-level disjunction. This disjunction states that either we know that no

tokens remain, or some tokens remain and location ℓ keeps a record of how many.

Accessing invariants with disjunctions. The changed invariant puts us in a bit of

a pickle: to symbolically execute the FAA in clone and drop free, we require an ℓ ↦→ 𝑛

resource. In the veri�cation in §4.2.1 we are sure to get ℓ ↦→ 𝑛 when opening the invariant,

but this is no longer a given in the current version. In the proof of clone and drop free,

we need the token-interact rule (which states that token 𝑃 𝛾 and no tokens 𝑃 𝛾 are

contradictory) to even establish ℓ ↦→ 𝑛.

Two di�erent approaches to deal with disjunction elimination have been considered

in prior work. Caper (Dinsdale-Young et al., 2017) handles them by trying to open any

invariant (called a region in Caper) in the proof context, �nding contradictions if possible,

and hoping to get the relevant resource out of some of those invariants. This approach

is su�cient to access the invariant in this example, but it is very ine�cient on goals

with multiple invariants. Diaframe (Chapter 2) only accesses an invariant when it is

sure the invariant is relevant for the goal—that is, the invariant can be used to discharge

the left-most separating conjunct. To symbolically execute the FAA, it detects that it

needs to establish a maps-to resource ℓ ↦→ 𝑛 for some 𝑛. It thus looks for invariants

containing a maps-to resource for ℓ . Unfortunately, the maps-to resource appears beneath

a disjunction in our invariant, so Diaframe just gives up. To complete the proof, Diaframe

requires the user to guide the proof search. Our new approach is capable of looking

beneath disjunctions to determine whether an invariant is relevant or not. It will establish

a connection between arc inv free and the goal ℓ ↦→ 𝑛, allowing it to automatically

determine which invariant to access. After �nding the connection, the proof of clone

proceeds largely the same as in §4.2.1.
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Reestablishing invariants with non-guarded disjunctions. The veri�cation of

drop free poses another challenge. To reestablish the invariant after symbolic execution

of the FAA instruction, we need to prove the following entailment (where 𝑝 is a positive

natural number):

problem-free-arc-drop

counter 𝑃 𝛾 𝑝, token 𝑃 𝛾, ℓ ↦→ (𝑝 − 1) ` |V
(

no tokens 𝑃 𝛾

∨ (∃𝑝 ′. ℓ ↦→ 𝑝 ′ ∗ counter 𝑃 𝛾 𝑝 ′)

)
∗ 𝑅

The disjunction behind the turnstile comes directly from the de�nition of the invariant

arc inv free on line 8–9 in Figure 4.3. The situation is the same as in §4.2.1: neither

side of the disjunction is provable, so directly backtracking on the choice of disjunct is

hopeless. The ∗𝑅 again represents the veri�cation of the remaining body of drop free,

so it is crucial to know now which resources are necessary for restoring the invariant:

they might be needed to prove 𝑅. The resources for the invariant and for the remaining

veri�cation are more entwined than before. If 𝑝 = 1, we need both ℓ ↦→ (𝑝 − 1) and 𝑃 1
to �nish the veri�cation, since the Free ℓ operation will consume the maps-to resource.

We need to perform a case analysis between 𝑝 = 1 and 𝑝 ≠ 1 to continue, but

this is not apparent from the goal. Our approach can �gure out this case distinction

automatically, since an appropriate ground connection is found from the counter 𝑃 𝛾 𝑝 to

the no tokens 𝑃 𝛾 resources (§4.5.3). This connection instructs the proof search that if

we may want to prove no tokens 𝑃 𝛾 , and we have counter 𝑃 𝛾 𝑝 , it should perform a

case analysis on 𝑝 = 1 and 𝑝 ≠ 1 to proceed. This ground connection allows us to verify

this ARC automatically, but it is more generic than that. It is also used in veri�cations of

readers-writer locks, which also use ‘token’ ghost theory.

4.3 Propositional Logic

We present the basic idea behind our approach for informed disjunction introduction

and elimination. The basic idea can be seen as relying on a signi�cant simpli�cation of

the notion of connection from connection calculi (Waaler, 2001; Wallen, 1990; Otten and

Kreitz, 1995). These calculi are complete for their speci�c logics, but not easy to extend

to other formalisms, particularly separation logic (Galmiche and Méry, 2002). We thus do

not attempt to formulate a complete calculus, but instead present a method that can be

extended to separation logic (§4.4) and ultimately Iris (§4.5). A comparison between our

simpli�ed version and complete connection calculi can be found in §4.8.

We start by phrasing the problems we have seen in §4.2 in the context of propositional

intuitionistic logic (§4.3.1). We illustrate our solution in this simple setting to give the

reader an intuition, and to highlight its essential proof-theoretic features, without getting

distracted by speci�c features of separation logic (e.g., substructural aspects) and Iris

(e.g., invariants, ghost state, and modalities). Our solution for this logic consists of a set

of rules that enables goal-directed elimination and introduction of disjunctions (§4.3.2).

Finally, we work out a representative example (§4.3.3), and discuss how our calculus can

support domain-speci�c knowledge via ground connections (§4.3.4),



4.3. PROPOSITIONAL LOGIC 89

4.3.1 Challenges and Key Idea
Recall from §4.2 that disjunctions pose two challenges for automated proof search. First,

when proving Δ ` 𝑃 ∨𝑄 , neither Δ ` 𝑃 nor Δ ` 𝑄 might be true. In that case, uninformed

disjunction introduction by backtracking will never �nd a proof. Second, we consider

disjunctions inside invariants, for which it is often unclear if their elimination is helpful.

In existing tools such disjunctions are either eliminated overeagerly (in Caper (Dinsdale-

Young et al., 2017)) or never (in Chapter 2). These challenges with disjunction introduction

and elimination are not speci�c to concurrent separation logic. To see that, let us consider

the following example (we let Δ `p 𝑃 denote an entailment in intuitionistic propositional

logic):

𝐴→ ((𝐵 ∧𝐶) ∨ 𝐹 ), 𝐴 `p 𝐵 ∨ 𝐹 .
A naive approach would be just to ‘try everything’, which at one point would eliminate

the implication and the disjunction underneath. As argued before, this naive approach

is ine�cient and does not scale when considering quanti�ers. Our approach instead

notices that 𝐵 occurs both in the �rst hypothesis and in the �rst disjunct. Establishing a

connection from the �rst hypothesis to the �rst disjunct allows us to continue by proving

two easier goals. Contrary to the naive approach, we know upfront that eliminating

the implication could help prove our goal, but we do not yet know if we can prove the

left-hand side of the implication.

4.3.2 Calculus
We now put the intuitive idea behind connections on a formal footing. We let 𝐴, 𝐵, and

𝐶 range over atoms, and let 𝑃 and 𝑄 range over formulas of intuitionistic propositional

logic. We let the contexts Δ and Γ be sets of formulas. We consider a formal system with

two logical judgments:

• The entailment judgment Δ `p Γ, which we interpret as

∧
Δ `p

∨
Γ.

• The connection judgment 𝑃, [𝑄] `cp 𝐴, [Γ′], which we interpret as 𝑃 ∧𝑄 `p 𝐴∨
∨

Γ′.

The idea of having a context Γ on the right is inspired by the multi-succedent calculus for

intuitionistic logic by Dragalin (1988). While Dragalin only has the entailment judgment,

we extend the system with a connection judgment 𝑃, [𝑄] `cp 𝐴, [Γ′]. This judgment

establishes a connection from formula 𝑃 to atom 𝐴, with side-conditions 𝑄 and remaining

cases Γ′. The terms between brackets can be seen as outputs: given a hypothesis 𝑃 ∈ Δ
and goal 𝐴, the rules of the judgment try to establish a connection by determining

appropriate 𝑄 and Γ′. Our rules ensure that the only way to establish a connection from

𝑃 to 𝐴 is to �nd 𝐴 occurring strictly positively in 𝑃 , i.e., 𝐴 occurs on the right-hand side

of any implication, but possibly under conjunctions and disjunctions.

The rules of our system can be found in Figure 4.4. It is trivial to establish that

these rules are sound w.r.t. the semantic interpretation—they can simply be derived

from the rules of intuitionistic propositional logic (see §4.6 for more details how this is

done in Coq). Inspired by focusing (Andreoli, 1992; Simmons, 2014; Liang and Miller,

2009), the rules are divided into two groups: the inversion phase, and the focusing phase.

Eventually, we want to turn our rules into an algorithm. We intend to apply inversion

rules eagerly, without backtracking on the options. This limits the search space and

improves e�ciency. One of the inversion rules will require a connection, and connections
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R∧
Δ `p 𝑃, Γ Δ `p 𝑄, Γ

Δ `p 𝑃 ∧𝑄, Γ

R∨
Δ `p 𝑃,𝑄, Γ
Δ `p 𝑃 ∨𝑄, Γ

R>

Δ `p >, Γ

R→
Δ, 𝑄 `p 𝑃

Δ `p 𝑄 → 𝑃, Γ

L⊥

Δ,⊥ `p Γ

F-a

𝑃 ∈ Δ 𝐴 ∈ Γ 𝑃, [𝑄] `cp 𝐴, [Γ′] Δ `p 𝑄, Γ Δ,
∨

Γ′ `p Γ

Δ `p Γ

Inversion phase

Focusing phase

L-a

𝐴, [>] `cp 𝐴, [𝜖]

L∧
𝑃𝑖 , [𝑄] `cp 𝐴, [Γ′]

(𝑃1 ∧ 𝑃2), [𝑄] `cp 𝐴, [Γ′]

L→
𝑃, [𝑄2] `cp 𝐴, [Γ′]

(𝑄1 → 𝑃), [𝑄2 ∧𝑄1] `cp 𝐴, [Γ′]

L∨
𝑃𝑖 , [𝑄] `cp 𝐴, [Γ′]

(𝑃1 ∨ 𝑃2), [𝑄] `cp 𝐴, [𝑃3−𝑖 , Γ′]

Figure 4.4: Our calculus for propositional logic based on connections.

can only be established with focusing rules. On these rules we do intend to backtrack.

The premises of focusing rules can only be established by other focusing rules.

Inversion phase. Rules R∧, R∨, R> and L⊥ are all straightforward. The R→ rule

chooses one disjunct for implication introduction, after which the other disjuncts are no

longer available. In a classical logic, it would be valid to keep Γ around, but we consider

an intuitionistic system. Eager application of the above rules e�ectively digs up all atoms

under conjunctions and disjunctions. One then uses the main workhorse F-a.

Suppose our goal is Δ `p Γ with 𝐴 ∈ Γ an atom. Rule F-a requires an hypothesis

𝑃 ∈ Δ for which a connection judgment 𝑃, [𝑄] `cp 𝐴, [Γ′] can be established. Once such

a connection is established, it is su�cient to prove the side-condition 𝑄—we continue

with goal Δ `p 𝑄, Γ. Additionally, we need to prove a new goal Δ,
∨

Γ′ `p Γ to cover the

remaining cases. Here we de�ne

∨
𝜖 , ⊥ and

∨(𝑃1, . . . , 𝑃𝑛) , 𝑃1 ∨ . . . ∨ 𝑃𝑛 . To see why
F-a is sound, note that proofs of Δ `p 𝑄, Γ either establish Δ `p Γ or Δ `p 𝑄 . In the �rst

case, we are done. In the latter case, our connection tells us that Δ `p 𝐴, Γ′. Since for the
remaining cases we have Δ,

∨
Γ′ `p Γ the rule is sound.

Focusing phase. The rules in this phase are responsible for �nding a connection, i.e.,

decomposing the hypothesis 𝑃 to a strictly positive occurrence of the atom 𝐴. The rules

basically perform structural recursion on the focused hypothesis 𝑃 . Rule L-a states that

𝐴 proves 𝐴 with a trivial side-condition and no remaining cases. Rule L→ establishes

a connection for an implication 𝑄 → 𝑃 , by adding side-condition 𝑄 to an established

connection from 𝑃 to 𝐴. Rule L∨ establishes a connection for a disjunction 𝑃1 ∨ 𝑃2, by
adding the unused disjunct to the remaining cases. Finally, rule L∧ simply looks beneath
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𝐵, [>] `cp 𝐵, [𝜖]
L-a

𝐵 ∧𝐶, [>] `cp 𝐵, [𝜖]
L∧

(𝐵 ∧𝐶) ∨ 𝐹, [>] `cp 𝐵, [𝐹 ]
L∨

𝐴→ ((𝐵 ∧𝐶) ∨ 𝐹 ), [> ∧𝐴] `cp 𝐵, [𝐹 ]
L→ . . .

Δ `p > ∧𝐴, 𝐵, 𝐸
(1)

. . .

Δ, 𝐹 `p 𝐵, 𝐸
(2)

Δ `p 𝐵, 𝐸
F-a

Δ `p 𝐵 ∨ 𝐸
R∨

(1)

Δ `p >, 𝐵, 𝐸
R>

𝐴, [>] `cp 𝐴, [𝜖]
L-a

Δ `p >, 𝐴, 𝐵, 𝐸
R>

Δ,⊥ `p 𝐴, 𝐵, 𝐸
L⊥

Δ `p 𝐴, 𝐵, 𝐸
F-a

Δ `p > ∧𝐴, 𝐵, 𝐸
R∧

(2)

𝐸, [>] `cp 𝐸, [𝜖]
L-a

𝐹 → 𝐸, [> ∧ 𝐹 ] `cp 𝐸, [𝜖]
L→ similar to (1)

Δ, 𝐹 `p > ∧ 𝐹, 𝐵, 𝐸 Δ,⊥ `p 𝐵, 𝐸
L⊥

Δ, 𝐹 `p 𝐵, 𝐸
F-a

Figure 4.5: Example derivation in our propositional calculus (we let Δ , 𝐴→ ((𝐵 ∧𝐶) ∨
𝐹 ), 𝐴, 𝐹 → 𝐸).

conjunctions to establish a connection.

Sources of incompleteness. The rules in Figure 4.4 are not su�cient for all goals

in intuitionistic logic. For example, goal 𝐴 ∨ 𝐵 `p > → 𝐴,> → 𝐵 is not provable, nor is

𝐴,𝐴→ ⊥ `p 𝐵. This would require an appropriate way to ‘look under’ an implication

with focusing rules. At the cost of complicating the system, our method may be extended

to approach completeness. The trade-o� between completeness and complexity may be

chosen separately for each practical adaptation. For our purposes, incompleteness for

the above goals is acceptable. We are primarily looking for a way to make progress on

the kind of disjunctions that appear in invariants.

4.3.3 Example

Figure 4.5 contains a possible derivation of 𝐴→ ((𝐵 ∧𝐶) ∨ 𝐹 ), 𝐴, 𝐹 → 𝐸 `p 𝐵 ∨ 𝐸 (this

entailment is closely related to the one in §4.3.1). For the �rst application of F-a, we �nd

(and prove) a connection from the implication to 𝐵, with side-condition 𝐴. This means

we now have to show that side-condition 𝐴 holds, and this is done in (1). However, we

also have to deal with the remaining case 𝐹 . As (2) shows, for 𝐹 we will actually pick a

di�erent disjunct to prove, namely 𝐸.

This demonstration shows that our rules are capable of goal-directed disjunction

introduction and elimination. However, they do not yet constitute an algorithm. This has

a couple of reasons:

• The disjuncts Γ are a set, so it is unclear what disjunct to use for F-a.
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• The conjuncts Δ are a set, so it is unclear what conjunct to use for F-a, if multiple

apply.

• Using R→ will irrevocably pick a disjunct to prove. If all disjuncts are implications,

one can only proceed with this rule—but how to pick the correct disjunct?

• If rule F-a is applicable on goal Δ `p Γ for some 𝑃 ∈ Δ, 𝐴 ∈ Γ, and some 𝑄 and Γ′,
it is also applicable for the same 𝑃 , 𝑄 and Γ′ for the spawned subgoals Δ `p 𝑄, Γ
and Δ,

∨
Γ′ `p Γ. This can cause loops.

Since intuitionistic propositional logic is not our target logic, we leave the system as is.

In the next section, we show how our approach scales to separation logic, and how we

can turn the approach into an algorithm in that setting.

4.3.4 Ground Connections
The system in this section deals with uninterpreted atoms. When we use it for program

veri�cation, the atoms will represent domain-speci�c propositions about data types

(natural numbers, maps, lists, sets) and Iris’s ghost state. Some atoms will be distinct, but

related in some way. Consider the entailment 0 ≤ 𝑛, 𝑛 ≤ 1 `p (0 < 𝑛 ∧ 𝑛 ≤ 1) ∨ 𝑛 = 0.
Without domain-speci�c information, the system will never be able to show its validity.

Ground connections provide a way to incorporate domain-speci�c relations between atoms

in the system. In this case, we could provide a ground connection from 0 ≤ 𝑛 to 0 < 𝑛

by proving the connection judgment 0 ≤ 𝑛, [>] `cp 0 < 𝑛, [𝑛 = 0]. By adding this rule

as an axiom in the focusing phase, we have extended our system with domain-speci�c

knowledge. We will revisit our idea of ground connections for ghost resources in §4.5.3.

4.4 Separation Logic

We now develop our connection-based approach for propositional (i.e., without quan-

ti�ers) separation logic. We �rst provide background on separation logic and outline

the challenges with its substructural nature (§4.4.1). We then propose an extension of

our calculus for separation logic (§4.4.2). This calculus can be turned into an algorithm,

which we explain and apply on an example (§4.4.3).

4.4.1 Background and Challenges
We do not base our approach on a speci�c model of separation logic (e.g., Iris), but

make it parametric over models of Bunched Implication (BI) logic (O’Hearn and Pym,

1999; Pym, 2002). That is, our approach is parametric over a structure with the usual

logical connectives, along with the separating conjunction (∗), and magic wand (−∗). The
separating conjunction (∗) is assumed to be associative and commutative, have a neutral

element (> ∗ 𝑃 a` 𝑃 ),4 and be the adjoint of the magic wand (𝑃 ` 𝑄 −∗ 𝑅 i� 𝑃 ∗𝑄 ` 𝑅).
In program veri�cation frameworks such as Iris, the separating connectives are used

instead of the regular ones (∧ and→) in most proofs. We thus omit regular implication

4
To ease presentation, we consider a�ne BIs, where ∧ and ∗ have the same neutral element> = True = Emp.

Such BIs satisfy 𝑃 ∗𝑄 ` 𝑃 . Our full version in Coq supports general BIs where ∧ and ∗ have di�erent neutral
elements.
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from the fragment of separation logic we consider. To represent intermediate goals, we

allow regular conjunction on the right-hand side of the turnstile, but do not support it in

hypotheses. Similar to §4.3, we consider multi-succedent entailments. These are now of

the form Δ `s Γ, and should be interpreted as∗ Δ `s
∨

Γ. Unlike §4.3, we consider Δ
and Γ to be a list of formulas instead of a set. This will help us turning our rules into an

algorithm (§4.4.3).

Introduction of separating conjunction. The main additional challenge of sepa-

ration logic is its substructural nature—resources may only be used once, and we will

need to accommodate for this in our calculus. The most striking consequence of substruc-

turality is that we do not have 𝑃 `s 𝑃 ∗ 𝑃 in general. The introduction rule for separating

conjunction (∗) thus di�ers in that of regular conjunction (∧) by having to subdivide

resources over the conjuncts:

Δ1 `s 𝐿 Δ2 `s 𝐺
Δ1,Δ2 `s 𝐿 ∗𝐺

(Remember that the resources in Δ are conjuncted with ∗, not ∧.) Choosing how to

subdivide the resources with this rule is challenging. We are aware of two approaches

to deal with this problem, both of which rely on restricting the grammar of the logic.

The classical restriction is to the (linear) hereditary Harrop fragment (Miller et al., 1991),

where the �nal conclusion of a magic wand must always be a single atom. In this system,

the proper distribution to Δ1 and Δ2 can be determined by annotating the entailment

with an input and output environment (Cervesato et al., 2000; Hodas and Miller, 1991), or

by annotating every hypotheses in Δ with a Boolean constraint (Harland and Pym, 1997).

However, this fragment does not contain goals like 𝐴,𝐴 −∗ (𝐵 ∗𝐶) `s 𝐵 ∗𝐶 , which we do

wish to consider. We thus follow a recent approach that instead restricts the grammar

of the left conjunct 𝐿. This allows the separating conjunction to be proven ‘in place’,

i.e., without explicitly splitting the context. This approach �rst appeared in Re�nedC

(Sammler et al., 2021), and was later adapted by Diaframe (Chapter 2). Essentially, the

following two rules are applied eagerly to push an atom 𝐴 to become the left-most

conjunct (i.e., Δ `s 𝐴 ∗𝐺):

Δ `s 𝐿1 ∗ (𝐿2 ∗𝐺), Γ
Δ `s (𝐿1 ∗ 𝐿2) ∗𝐺, Γ

Δ `s 𝐺, Γ
Δ `s > ∗𝐺, Γ

Here, we let 𝐿 ::= > | 𝐴 | 𝐿 ∗ 𝐿. Limiting the grammar of the left conjunct enables a

deterministic rule for introducing the separating conjunction, and—as Re�nedC and

Diaframe have demonstrated—this limitation is acceptable: interesting veri�cation goals

remain expressible.

4.4.2 Calculus
To adapt the proof rules from §4.3 to separation logic, we adopt the approach mentioned

in the previous subsection, limiting the grammar of the left conjunct 𝐿 and adding rules to

push atoms to be the left-most conjunct. Only for goals of shape Δ `s 𝐴∗𝐺, Γ will we look

for a connection from some 𝐻 ∈ Δ to𝐴. The connection judgment 𝐻, [𝐿] `cs 𝐴 ∗ [𝑈 ] , [Λ]
also changes: it now contains a parameter𝑈 , which we dub the residue, that describes the
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R>

Δ `s >, Γ

R𝐴
Δ `s 𝐴 ∗ >, Γ
Δ `s 𝐴, Γ

R∧
Δ `s 𝐺1, Γ Δ `s 𝐺2, Γ

Δ `s 𝐺1 ∧𝐺2, Γ

R∨
Δ `s 𝐺1,𝐺2, Γ

Δ `s 𝐺1 ∨𝐺2, Γ

R−∗⊥

Δ `s ⊥ −∗ 𝐺, Γ

R−∗>
Δ `s 𝐺, Γ

Δ `s > −∗ 𝐺, Γ

R−∗∗
Δ `s 𝑈1 −∗ 𝑈2 −∗ 𝐺, Γ
Δ `s (𝑈1 ∗𝑈2) −∗ 𝐺, Γ

R−∗∨
Δ `s (𝑈1 −∗ 𝐺) ∧ (𝑈2 −∗ 𝐺), Γ

Δ `s (𝑈1 ∨𝑈2) −∗ 𝐺, Γ

R−∗𝐻
Δ, 𝐻 `s 𝐺

Δ `s 𝐻 −∗ 𝐺, Γ

R∗>
Δ `s 𝐺, Γ

Δ `s > ∗𝐺, Γ

R∗∗
Δ `s 𝐿1 ∗ (𝐿2 ∗𝐺), Γ
Δ `s (𝐿1 ∗ 𝐿2) ∗𝐺, Γ

R∗∨
Δ `s 𝐿1 ∗𝐺, 𝐿2 ∗𝐺, Γ
Δ `s (𝐿1 ∨ 𝐿2) ∗𝐺, Γ

R∗𝐴
𝐻 ∈ Δ 𝐻, [𝐿] `cs 𝐴 ∗ [𝑈 ] , [Λ]

Δ \ 𝐻 `s 𝐿 ∗
(
(𝑈 −∗ 𝐺) ∧

(∨
Λ −∗ (𝐴 ∗𝐺 ∨

∨
Γ)

))
, 𝐻 −∗

∨
Γ

Δ `s 𝐴 ∗𝐺, Γ

unfocus

Δ `s Γ
Δ `s 𝐴 ∗𝐺, Γ

Inversion phase

Focusing phase

L-a

𝐴, [>] `cs 𝐴 ∗ [>] , [𝜖]

L∗
𝑈𝑖 , [𝐿] `cs 𝐴 ∗

[
𝑈 ′

]
, [𝐷1, . . . , 𝐷𝑛]

(𝑈1 ∗𝑈2), [𝐿] `cs 𝐴 ∗
[
𝑈 ′ ∗𝑈3−𝑖

]
, [𝐷1 ∗𝑈3−𝑖 , . . . , 𝐷𝑛 ∗𝑈3−𝑖 ]

L−∗
𝑈1, [𝐿2] `cs 𝐴 ∗ [𝑈2] , [Λ]

(𝐿1 −∗ 𝑈1), [𝐿2 ∗ 𝐿1] `cs 𝐴 ∗ [𝑈2] , [Λ]

L∨
𝑈𝑖 , [𝐿] `cs 𝐴 ∗

[
𝑈 ′

]
, [Λ]

(𝑈1 ∨𝑈2), [𝐿] `cs 𝐴 ∗
[
𝑈 ′

]
, [𝑈3−𝑖 ∗ 𝐿,Λ]

Grammar

𝐴 ::= atoms

𝐿 ::= > | 𝐴 | 𝐿 ∗ 𝐿 | 𝐿 ∨ 𝐿
𝐻 ::= 𝐴 | 𝐿 −∗ 𝑈 Δ ::= 𝜖 | 𝐻,Δ

𝑈 , 𝐷 ::= ⊥ | > | 𝐻 | 𝑈 ∗𝑈 | 𝑈 ∨𝑈 Λ ::= 𝜖 | 𝑈 ,Λ
𝐺 ::= > | 𝐴 | 𝐺 ∧𝐺 | 𝐺 ∨𝐺 | 𝑈 −∗ 𝐺 | 𝐿 ∗𝐺 Γ ::= 𝜖 | 𝐺, Γ

De�nitions

Δ `s Γ ,∗ Δ `s
∨

Γ

𝐻, [𝐿] `cs 𝐴 ∗ [𝑈 ] , [Λ] , 𝐻 ∗ 𝐿 `s (𝐴 ∗𝑈 ) ∨
∨

Λ

Figure 4.6: Our calculus for separation logic based on connections.
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resources from 𝐻 that are not used to establish 𝐴. We interpret 𝐻, [𝐿] `cs 𝐴 ∗ [𝑈 ] , [Λ] as
𝐻 ∗ 𝐿 `s (𝐴 ∗𝑈 ) ∨

∨
Λ. Carrying around the residue 𝑈 is not just for convenience or

e�ciency: unlike for propositional logic, goals can become unprovable if the resources𝑈

are dropped, since they may be needed to prove 𝐺 . The rules of the system, along with

the grammar, can be found in Figure 4.6.

Inversion phase. Let us �rst consider the rules in the inversion phase. The rules for

introducing >, ∧ and ∨ are the same as in the system for propositional logic. Rule R𝐴

puts a lone atom into a separating conjunction, whose introduction rules we will discuss

shortly. The wand introduction rule R−∗𝐻 is the same as that of→, but there are additional

wand introduction rules for each entry in the grammar of 𝑈 . These rules enforce that

hypotheses are simpli�ed upon adding them to Δ. We have an introduction rule for ∗ for
every entry in the grammar of 𝐿, which (using associativity of ∗ and distributivity of ∗
over ∨) pushes a lone atom𝐴 to be the left conjunct. This is all to prepare for the R∗𝐴 rule,

which requires a connection to make progress. The rule R∗𝐴 for �nding a connection is

quite a mouthful, so we will go over it in more detail. It plays the same role as F-a in §4.3,

yet it looks quite di�erent. To see their relation, we restate F-a, along with an alternative:

F-a

𝐻 ∈ Δ 𝐴 ∈ Γ 𝐻, [𝐿] `cp 𝐴, [Λ]
Δ `p 𝐿, Γ Δ,

∨
Λ `p Γ

Δ `p Γ

F-alt

𝐻 ∈ Δ 𝐴 ∈ Γ 𝐻, [𝐿] `cp 𝐴, [Λ]
Δ `p 𝐿 ∧

(∨
Λ→

∨
Γ
)
, Γ

Δ `p Γ

One can check that F-alt implies F-a, by using R∧, R→ and R∨. The rule R∗𝐴 is the

separation logic cousin of F-alt, but it has to deal with the remaining goal ∗𝐺 . Assuming

𝐻 ∈ Δ, it states:

remaining cases

residue

side-conditions

𝐻, [𝐿] `cs 𝐴 ∗ [𝑈 ] , [Λ] Δ \ 𝐻 `s 𝐿 ∗
( (1)︷    ︸︸    ︷
(𝑈 −∗ 𝐺) ∧

(2)︷                            ︸︸                            ︷(∨
Λ −∗ (𝐴 ∗𝐺 ∨

∨
Γ)

) )
,

(3)︷      ︸︸      ︷
𝐻 −∗

∨
Γ

Δ `s 𝐴 ∗𝐺, Γ
(R∗𝐴)

Similar to F-alt, we �rst establish a connection judgment 𝐻, [𝐿] `cs 𝐴 ∗ [𝑈 ] , [Λ]. The
entailment we need to prove has the side-condition 𝐿 as the left conjunct—but the right

conjunct of R∗𝐴 is more complicated than in F-alt. It consists of a regular conjunction of

(1) with (2). To see why, note that from the connection we learn (𝐴 ∗𝑈 ) ∨∨
Λ, while

we need to prove (𝐴 ∗𝐺) ∨∨
Γ. In the 𝐴 ∗𝑈 case, we commit to proving 𝐴 ∗𝐺 , since

we have already learned 𝐴. What remains is (1): try to prove goal 𝐺 with our additional

resources𝑈 , i.e.,𝑈 −∗ 𝐺 . In the

∨
Λ case, the goal remains unchanged: this is precisely

obligation (2), which we also encounter in F-alt.

It could also be that we cannot establish 𝐿. Unlike for propositional logic, that would

be a problem: we did consume 𝐻 and remove it from our context Δ, but we may need it

to prove Γ. To cover this case, we have component (3) of shape 𝐻 −∗ ∨
Γ. Essentially, we

keep a fall-back disjunct around: should we fail to prove the �rst disjunct, we can still try

(3), with which we will recover hypothesis 𝐻 . This additionally removes 𝐴 ∗𝐺 from the

goal: we failed to prove it earlier, interpret this as ‘the left-most disjunct is unprovable’,

and remove it from the goal accordingly.
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𝐻, [𝐴] `cs 𝐵 ∗ [𝐶] , [𝐹 ]
𝐴, [>] `cs 𝐴 ∗ [>] , [𝜖]

.

.

.

𝐹 `s 𝐹
follows easily

𝐹 `s 𝐵 ∗ >, 𝐹
unfocus

𝐹 `s (𝐵 ∗ >) ∨ 𝐹
R∨

`s 𝐹 −∗ ((𝐵 ∗ >) ∨ 𝐹 ), 𝐴 −∗ 𝐻 −∗ 𝐹
R−∗𝐻

.

.

.

𝐴 `s 𝐴 ∗
(
(𝐶 −∗ >) ∧

(
𝐹 −∗ ((𝐵 ∗ >) ∨ 𝐹 )

) )
, 𝐻 −∗ 𝐹

R∗𝐴

𝐻,𝐴, `s 𝐵 ∗ >, 𝐹
R∗𝐴

𝐻,𝐴, `s 𝐵, 𝐹 R𝐴

𝐻,𝐴, `s 𝐵 ∨ 𝐹
R∨

Figure 4.7: Example derivation in our calculus for separation logic (we let 𝐻 , 𝐴 −∗
((𝐵 ∗𝐶) ∨ 𝐹 )).

The �nal ingredient of the inversion phase is unfocus, which should be used only

when R∗𝐴 is not applicable—that is, if we cannot �nd a connection from any 𝐻 ∈ Δ to 𝐴.

If that is the case, we give up trying to prove this disjunct and continue with the left-most

disjunct of Γ. If unfocus is needed directly after an application of R∗𝐴, we will recover
the used hypothesis.

Focusing phase. The rules of this phase are used to establish a connection in R∗𝐴.
Contrary to their counterparts in §4.3, they need to ensure resources are not dropped, as

that may make our goal unprovable. Rule L−∗ is nearly identical, but rule L∨ includes the

side-condition 𝐿 in the remaining cases. In L∗, we obtain the unused conjunct 𝑈3−𝑖 in
both the residue, and in every disjunct in Λ.

4.4.3 Algorithmic Version
Unlike the system in § 4.3, the system in Figure 4.6 can be turned into an algorithm.

Substructurality helps here: since hypotheses must be removed after usage, we will never

have trivial loops. On goal Δ `s Γ, the algorithm tries the following repeatedly, in order:

1. Eagerly apply R∧, R∨, R>, R∗>, R∗∗, R∗∨, R−∗⊥, R−∗>, R−∗∗, R−∗∨; otherwise:
2. If the left-most disjunct is a wand, apply R−∗𝐻 ; otherwise:
3. If the left-most disjunct is a lone atom, apply R𝐴; otherwise:

4. Our goal has shape Δ `s 𝐴 ∗𝐺, Γ with 𝐴 an atom. Apply R∗𝐴 to �nd a connection

from 𝐻 ∈ Δ to 𝐴. Connections are established by backtracking on rules in the

focusing phase. If no connection for any 𝐻 ∈ Δ can be found, then:

5. Drop the left-most disjunct, by applying unfocus.

Figure 4.7 shows our algorithm in action on a slight modi�cation of the example from

§4.3.3. We de�ne 𝐻 , 𝐴 −∗ ((𝐵 ∗𝐶) ∨ 𝐹 ), and prove 𝐻,𝐴, `s 𝐵 ∨ 𝐹 . We omit derivations

of connections, and show the important steps. The connection 𝐻, [𝐴] `cs 𝐵 ∗ [𝐶] , [𝐹 ]
forces the elimination of the disjunction in 𝐻 before choosing a disjunct, and at the same

time makes an informed choice of disjunct: 𝐻 can sometimes produce 𝐵, and precisely in

this case we choose the 𝐵 disjunct in the goal.
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The role of backtracking. The only source of backtracking in the algorithm is

Item 4, which applies R∗𝐴. To apply this rule, we backtrack over the hypothesis 𝐻 ∈ Δ
to �nd a connection to goal 𝐴. Determining whether a speci�c 𝐻 ∈ Δ has a connection

to 𝐴 also involves some backtracking, since we need to choose one of the conjuncts or

disjuncts in L∗ and L∨, respectively. Once we �nd a connection from some 𝐻 ∈ Δ to 𝐴,

we do not backtrack to �nd di�erent connections. This is almost never a problem because

of the substructural nature of separation logic: a given atomic goal 𝐴 usually only occurs

once in the hypotheses.

Sources of incompleteness. The algorithm is not complete, even with the limited

grammar of 𝐿. A key source of incompleteness is Item 2, which applies rule R−∗𝐻 when

the left-most disjunct is a wand, thereby removing the option to consider another disjunct.

On goal𝐴 −∗ 𝐵∨𝐶,𝐴 `s 𝐹 −∗ 𝐵, 𝐹 −∗ 𝐶 , the system has no choice but to commit to the �rst

disjunct, since we do not have a focusing rule to look beneath wands. Another problematic

goal is 𝐴 −∗ (𝐵 ∗𝐶), 𝐴, 𝐹 `s (𝐵 ∨ 𝐹 ) ∗𝐴, for which the system will (wrongfully) commit

to prove 𝐵, whereas 𝐹 should be proven. Despite this, the system can fully automatically

solve practical examples, such as the ones from §4.2. Our implementation also provides

tools to deal with problematic goals, which we will discuss in §4.6.

4.5 Iris

Although Iris satis�es the rules in §4.4, it comes with additional connectives and rules

that complicate the situation, e.g., modalities, higher-order quanti�cation, invariants, and

ghost state. To handle disjunctions as well as these additional features, we marry our

connection-based calculus with the existing proof search strategy for Iris provided by

Diaframe (Chapter 2).

The key ingredient of Diaframe’s strategy is its notion of bi-abduction hints, which

makes Diaframe parametric in domain-speci�c knowledge about ghost state. We provide

background about bi-abduction hints, and explain why they do not address the problems

with disjunctions (§4.5.1). We then generalize the connection judgment to include bi-

abduction hints (§4.5.2). We �nally show some instances of the bi-abduction version of

ground connections (introduced for propositional logic in §4.3.4), and how they are used

in the automated veri�cation of ARC (§4.5.3).

4.5.1 Background on Diaframe

Diaframe accounts for Iris’s higher-order quanti�cation and modalities with bi-abduction

hints, which are de�ned as follows (eliding Iris’s masks on update modalities):

𝐻 ∗ [®𝑦;𝐿] � [|V] ®𝑥 ;𝐴 ∗ [𝑈 ] , ∀®𝑦.
(
𝐻 ∗ 𝐿 `s |V (∃®𝑥 . 𝐴 ∗𝑈 )

)
.

Such hints are used to update hypotheses 𝐻 to prove goal 𝐴, where 𝐻 and 𝐴 are some

resources. For example, the token-mutate-incr rule used for the veri�cation of ARC is

provided as the following hint by Diaframe’s ‘token’ ghost theory library:

counter 𝑃 𝛾 𝑝 ∗ [ ;>] � [|V] ; counter 𝑃 𝛾 (𝑝 + 1) ∗ [token 𝑃 𝛾]
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During program veri�cation, this hint can be used to update a hypothesis counter 𝑃 𝛾 𝑝

to atomic goal counter 𝑃 𝛾 (𝑝 + 1), after which we receive a token 𝑃 𝛾 to help prove the

remaining goal. Additionally, Diaframe has a procedure to construct hints recursively.

This is used to determine whether opening an invariant is relevant, with a procedure

similar to the focusing rules of our calculus (these recursive hints go below quanti�ers,

hence the binders ®𝑥 and ®𝑦 in hints).

Bi-abduction hints have two weaknesses. Firstly, they cannot express disjunctive

reasoning patterns of ghost state. The following two hints are available for counter 𝑃 𝛾 𝑝 ,

but they do not specify what to do for general 𝑝 , nor can they:

token-deallocate-biabd

𝑝 = 1

counter 𝑃 𝛾 𝑝 ∗ [ ; token 𝑃 𝛾] � [|V] ; no tokens 𝑃 𝛾 ∗ [𝑃 1]

token-mutate-decr-biabd

𝑝 > 1

counter 𝑃 𝛾 𝑝 ∗ [ ; token 𝑃 𝛾] � [|V] ; counter 𝑃 𝛾 (𝑝 − 1) ∗ [>]

The second weakness is that bi-abduction hints cannot look beneath disjunctions. If an

invariant features a top-level disjunction, no bi-abduction hints can be found without

user guidance. We show how connections generalize bi-abduction hints and address both

weaknesses.

4.5.2 Connections in Iris

To retain Diaframe’s support for ghost resources, while extending it with our connection-

based approach for disjunctions, we describe a generalization of bi-abduction hints and

connection judgments. The new connection judgment has the modalities and quanti�ers

from bi-abduction, and the remaining cases from the propositional connection judgment.

The challenge is getting the scoping right, i.e., determining under which quanti�cation

and modality to put the remaining cases.

Diaframe translates veri�cation goals (such as Hoare triples) into an entailment

format of shape Δ `s |V∃®𝑥 . 𝐿 ∗𝐺 , and uses bi-abduction hints to make progress on these

entailments. A key component of this approach is the ‘lazy’ introduction of existentials

and modalities. We extend this format to Δ `s |V ((∃®𝑥 . 𝐿 ∗𝐺1) ∨𝐺2). The additional
disjunct 𝐺2 makes the format multi-succedent, causing disjunctions to be introduced

‘lazily’ too.
5

The de�nition of the connection judgment connection-def, and its application rule

R∃∗𝐴 can be found in Figure 4.8, along with Diaframe’s original de�nition of bi-abduction

hints biabd-def and the corresponding application rule biabd-apply. Arrows signify

the scope of variables ®𝑥 and ®𝑦. The de�nitions connection-def and biabd-def mainly

di�er in the Λ parameter, hence:

𝐻 ∗ [®𝑦;𝐿] � [|V] ®𝑥 ;𝐴 ∗ [𝑈 ] if and only if 𝐻, [®𝑦;𝐿] `cs ®𝑥 ;𝐴 ∗ [𝑈 ] , [𝜖]

5
Even though a disjunction is a special case of an existential quanti�er, this format is more general: when

𝐺2 is not a separating conjunction, one cannot directly �t |V ( (∃®𝑥. 𝐿 ∗𝐺1) ∨𝐺2) into |V∃®𝑥. 𝐿 ∗𝐺 .
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𝐻 ∗ [®𝑦;𝐿] � [|V] ®𝑥 ;𝐴 ∗ [𝑈 ] , ∀®𝑦.
(
𝐻 ∗ 𝐿 `s |V (∃®𝑥 . 𝐴 ∗𝑈 )

)
(biabd-def)

biabd-apply

𝐻 ∈ Δ 𝐻 ∗ [®𝑦;𝐿] � [|V] ®𝑥 ;𝐴 ∗ [𝑈 ] Δ \ 𝐻 `s |V∃®𝑦. 𝐿 ∗ (∀®𝑥 . 𝑈 −∗ 𝐺)
Δ `s |V∃®𝑥 . 𝐴 ∗𝐺

𝐻, [®𝑦;𝐿] `cs ®𝑥 ;𝐴 ∗ [𝑈 ] , [Λ] , ∀®𝑦.
(
𝐻 ∗ 𝐿 `s |V

(
(∃®𝑥 . 𝐴 ∗𝑈 ) ∨

∨
Λ
) )

(connection-def)

R∃∗𝐴
𝐻 ∈ Δ 𝐻, [®𝑦;𝐿] `cs ®𝑥 ;𝐴 ∗ [𝑈 ] , [Λ]

Δ \ 𝐻 `s |V
( (
∃®𝑦. 𝐿 ∗

(
(∀®𝑥 . 𝑈 −∗ |V𝐺1) ∧

(∨
Λ −∗ |V ((∃®𝑥 . 𝐴 ∗𝐺1) ∨𝐺2)

)))
∨ (𝐻 −∗ |V𝐺2)

)
Δ `s |V ((∃®𝑥 . 𝐴 ∗𝐺1) ∨𝐺2)

Figure 4.8: Bi-abduction hints and connection judgments for Iris’s separation logic

By above equivalence, existing bi-abduction hints become instances of the connection

judgment, allowing us to reuse all of Diaframe’s ghost libraries. Note that when applying

R∃∗𝐴 with 𝐺2 = ⊥ and Λ = 𝜖 , the resulting goal is quite similar to that of biabd-apply.

When establishing these generalized connections, a focusing rule similar to L∨ allows us

to look beneath disjunctions in hypotheses. Disjunctive ghost-state reasoning patterns

can be expressed by adding domain-speci�c ground connections, which we now discuss.

4.5.3 Ground Connections in Iris
To apply our system to the veri�cation of actual programs, it should be instructed about

the domain-speci�c knowledge on the relation between ghost resources (which are

considered atoms in the formal system). We do so by adding ground connections, i.e., by

adding ‘axioms’ to the focusing judgment. A ground connection from𝐴1 to𝐴2 is an axiom

𝐴1, [®𝑥 ;𝐿] `cs ®𝑦;𝐴2 ∗ [𝑈 ] , [Λ], usually provided (and proved sound) by a ghost resource

library. This states that 𝐴1 can possibly be updated to 𝐴2, with side-condition 𝐿, residue

𝑈 , and remaining cases Λ. We discuss some examples.

Pure ground connection. In the veri�cation of drop in ARC without dealloca-

tion (§4.2.1), the original version of Diaframe gets stuck at the problematic entailment

problem-gc-arc-drop, namely:

p𝑛 > 0q, counter 𝑃 𝛾 𝑛, token 𝑃 𝛾 ` |V
( (
p𝑛 − 1 = 0q ∗ no tokens 𝑃 𝛾

)
∨

(
p0 < 𝑛 − 1q ∗ counter 𝑃 𝛾 (𝑛 − 1)

) ) ∗ 𝑅
In our new system, the proof strategy looks for a connection to p𝑛 − 1 = 0q, and �nds

the following ground connection:

𝜙 is decidable ¬𝜙 is not provable

𝜀1, [ ;>] `cs ; p𝜙q ∗ [p𝜙q] , [p¬𝜙q]
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The 𝜀1 hypothesis is a technical trick from Chapter 2. It is a syntactic marker with

𝜀1 , >, and always said to be the last hypothesis in the context (sound since Δ ` >). The
connection states that for decidable 𝜙 , there is a connection from 𝜀1 to p𝜙q, i.e., that 𝜀1
can sometimes be updated to p𝜙q. Whenever it can, we learn p𝜙q additionally. Whenever

it cannot, we learn p¬𝜙q. The proof automation will thus perform case analysis on pure

goals 𝜙 whenever a disjunct is guarded by 𝜙 . The ‘¬𝜙 is not provable’ condition is met

whenever the pure automation cannot establish ¬𝜙 . This is necessary to prevent loops:

in the remaining case we learn ¬𝜙 , but are still faced with a disjunct containing 𝜙 . Since

we can now establish ¬𝜙 , this ground connection will not be found.

Token ground connection. In the veri�cation of drop in ARC with explicit deallo-

cation (§4.2.2), the problematic entailment is problem-free-arc-drop, namely:

counter 𝑃 𝛾 𝑝, token 𝑃 𝛾, ℓ ↦→ (𝑝 − 1) ` |V
(

no tokens 𝑃 𝛾

∨ ∃𝑝 ′. ℓ ↦→ 𝑝 ′ ∗ counter 𝑃 𝛾 𝑝 ′

)
∗ 𝑅

Note that token-deallocate-biabd is not applicable, since we only know 𝑝 > 0. The
proof search strategy will �nd the following ground connection from counter 𝑃 𝛾 𝑝 to

no tokens 𝑃 𝛾 .

maybe-token-dealloc

𝑝 ≠ 1 is not provable

counter 𝑃 𝛾 𝑝, [ ; token 𝑃 𝛾] `cs ;

no tokens 𝑃 𝛾 ∗ [p𝑝 = 1q ∗ 𝑃 1] , [counter 𝑃 𝛾 𝑝 ∗ token 𝑃 𝛾 ∗ p𝑝 ≠ 1q]

This states that if it is possible that 𝑝 = 1, then counter 𝑃 𝛾 𝑝 can sometimes be updated

to prove no tokens 𝑃 𝛾 , if we additionally provide a token 𝑃 𝛾 . Since it does not

require 𝑝 = 1, it is stronger than token-deallocate-biabd. If the update is succesful,

we learn 𝑝 = 1 and 𝑃 1. Otherwise, we recover both counter 𝑃 𝛾 𝑝 and token 𝑃 𝛾 , and

additionally learn 𝑝 ≠ 1. This ground connection performs the desired case distinction in

the veri�cation of ARC, but is also used in the veri�cation of readers-writer locks. The

‘𝑝 ≠ 1 is not provable’ condition is again necessary to prevent loops.

4.6 Soundness Proof and Implementation in Coq

Soundness. In our artifact (Mulder et al., 2023a) we prove soundness of our calculi.

We do so by giving a semantic interpretation of the propositions and judgments, and

prove the derivation rules as lemmas about the semantic interpretation. For the calculus

for propositional logic (§4.3), propositions are interepreted as Coq’s propositions Prop.

For the separation-logic versions (§ 4.4 and 4.5), we interpret propositions within an

arbitrary BI logic (O’Hearn and Pym, 1999; Pym, 2002) (we use the type classes from the

MoSeL framework (Krebbers et al., 2018) for BIs in Coq). Since Iris is an instance of a BI,

and Iris is sound (Jung et al., 2018b, Thm. 7), this means our proof automation constructs

closed Coq proofs w.r.t. the operational semantics of the programming language.

Algorithm. The algorithm from §4.4.3, extended with the support for higher-order

quanti�cation and modalities described in §4.5, has been implemented as a fork of the

Diaframe library. It consists of ca. 22.000 lines of Coq code, about 7.000 more than the
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original library. The algorithm works by applying the proof rules from our calculus, and

is thus trivially sound. We rely on type classes (Sozeau and Oury, 2008), for instance, to

register ground connections. The proof search strategy is available as a tactic iSteps,

implemented with Ltac (Delahaye, 2000).

Debugging and cooperation with interactive proofs. Since our calculi and al-

gorithms are incomplete, they will fail to prove some goals that might nevertheless be

provable. In such cases, we aim to provide better information and cooperation with

interactive proofs than traditional backtracking proof search. We discuss some common

patterns where the proof search gets stuck, and discuss the additional tactics we provide

to investigate or complete such proofs.

• Unprovable part of goal is not inside a disjunction: 𝐴𝑖 `s (𝐴1 ∨ 𝐴2) ∗ 𝐵. For this
example, the iSteps tactic will make partial progress: it proves the appropriate

side of the disjunction, then stops at the remaining goal `s 𝐵. This is precisely the

problematic part of the original goal.

• The algorithm commits to a wrong disjunct with R−∗𝐻 : 𝐴 −∗ (𝐵 ∗ 𝐶), 𝐴, 𝐹 `s (𝐵 ∨
𝐹 ) ∗ 𝐴. The iSteps tactic makes a bad choice here: after �nding a connection

from hypothesis 𝐴 −∗ (𝐵 ∗𝐶) to goal 𝐵 and some further steps, the goal becomes

𝐹 `s 𝐶 −∗ 𝐴,𝐴 −∗ (𝐴 −∗ (𝐵 ∗𝐶)) −∗ (𝐹 ∗ 𝐴). Rule R−∗𝐻 then commits to the wrong

disjunct: we get stuck at 𝐹,𝐶 `s 𝐴. We encountered a situation like this during

the veri�cation of Peterson (1981)’s algorithm. Our implementation provides two

options to proceed. First, there is the iStepsSafe tactic, which stops the algorithm

just before dropping disjuncts with R−∗𝐻 . The user can then manually pick the

correct side of the disjunct using the standard Iris Proof Mode tactics. Second is the

iSmash tactic, which will backtrack to try unfocus if R−∗𝐻 failed to produce a proof.

This is su�cient for Peterson (1981)’s algorithm and the simple example, but will

still fail on 𝐴 −∗ 𝐵 ∨𝐶,𝐴 `s 𝐹 −∗ 𝐵, 𝐹 −∗ 𝐶 .

• The algorithm wrongfully drops a disjunct with unfocus: 𝐴∧𝐵,𝐶 `s (𝐴∨ 𝐹 ) ∗𝐶 . Our
calculus has no support for regular conjunction in hypotheses, which means that no

connection to 𝐴 can be established. (Support could be added—this example serves

to demonstrate what happens when the algorithm misses a desirable connection.)

After unfocus, we thus get stuck at the unprovable goal 𝐴 ∧ 𝐵,𝐶 `s 𝐹 ∗ 𝐶 . We

provide the iStepsSafest tactic for such cases: it behaves like iStepsSafe, but

also stops the algorithm just before unfocus would drop the left-most disjunct.

iStepsSafest may still turn provable goals into unprovable goals, by �nding and

using connections for some pathological resources. Resources that feature a ‘⊥ −∗ 𝐴’
pattern may cause problems, for example. We have not seen this happen in practice.

4.7 Evaluation

We evaluate our approach by verifying the examples in Diaframe’s original benchmark.

Figure 4.9 contains a comparison between our connection-based approach, the original

Diaframe, and Caper.

Comparison with Diaframe 1.0. Our connection-based handling of disjunctions

increases the number of examples that can be veri�ed fully automatically from 7/24 to
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name impl total time proof

old

proof

old

time

caper

total

caper

proof

arc (Rust Language, 2021) 18 53 0:13 0 7 0:10 70 1

bag stack (Treiber, 1986) 29 119 0:25 38 36 0:17 70 0

barrier 58 183 16:30 7 38 13:22 102 0

barrier client 58 150 1:10 21 44 0:50 189 0

bounded counter 20 72 0:17 6 7 0:11 50 2

cas counter 14 56 0:11 0 0 0:08 40 0

cas counter client 16 36 0:07 0 0 0:06 94 0

clh lock (Magnusson et al., 1994) 30 86 0:34 0 3 0:22

fork join 14 57 0:09 0 0 0:08 38 0

fork join client 13 30 0:04 0 0 0:04 70 0

inc dec 23 78 0:44 0 0 0:31 54 0

lclist (Vafeiadis, 2008; Calcagno et al., 2007) 28 83 0:42 15 18 0:27

lclist extra 119 187 2:29 7 2 1:31

mcs lock (Mellor-Crummey and Scott, 1991) 54 131 1:38 0 11 1:11

msc queue (Michael and Scott, 1996) 36 156 2:54 43 46 1:42

peterson (Peterson, 1981) 46 164 14:19 25 28 7:51

queue 42 163 1:42 46 46 1:17 99 0

rwlock duolock (Courtois et al., 1971) 45 101 0:23 0 10 0:21

rwlock lockless faa 27 74 0:34 0 1 0:20 68 1

rwlock ticket bounded 40 117 1:15 5 12 0:54

rwlock ticket unbounded 38 111 0:25 0 5 0:21

spin lock 13 59 0:08 0 0 0:06 39 0

ticket lock 23 84 0:32 0 6 0:23 59 0

ticket lock client 18 39 0:07 0 0 0:06 79 0

total 822 2389 47:24 213 320 32:30 1121 4

Figure 4.9: Data on veri�ed examples. Rows correspond to �les in the supplementary material. Columns show number of lines of

implementation of the program, lines in total, and lines of proof burden. The time column displays the average veri�cation time in

minutes:seconds. Proof burden for the old proof burden of Diaframe is also shown, as well as the proof burden of Caper. Bolded
examples have reduced proof burden.
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14/24. Larger examples tend to have a larger reduction of proof burden: for example, the

proof burden of ARC (18 lines of implementation) is reduced by 7 lines, while that of the

barrier (58 lines of implementation) is reduced by 31 lines. The remaining proof burden

is due to existing orthogonal problems with Diaframe’s automation (its poor support for

recursive representation predicates, and its limited solver for pure goals). The veri�cation

time over all examples did go up by around 50%, from 32 to 47 minutes. We believe

the increased veri�cation time is acceptable, as for 22/24 examples the veri�cation time

remains below 3 minutes. Exceptions are the barrier and Peterson (1981)’s algorithm.

Both of these examples feature invariants with 𝑛-ary disjunctions, where 𝑛 ≥ 10. We

believe the slowdown is a side-e�ect of our proper support for disjunctions. In the

original Diaframe, disjunctions in invariants were ‘opaque’, whereas all the atoms inside

a disjunction are now checked for ground connections to a goal. The veri�cation of

Peterson’s algorithm su�ers an additional slowdown due to the use of backtracking,

which we will discuss shortly.

Comparison with Caper. For most examples, Caper (Dinsdale-Young et al., 2017)

still has the lowest proof burden. This is due to aforementioned orthogonal problems

with Diaframe (recursive representation predicates and pure goals). Since Caper has

superior support for recursive representation predicates, it can verify the queue and the

Treiber (1986) stack without user guidance. Caper also employs SMT solvers as trusted

oracles, making it better at solving pure sideconditions. However, as noted by Windsor

et al. (2017), Caper likely cannot handle examples such as the CLH lock (Magnusson et al.,

1994) and the MCS lock (Mellor-Crummey and Scott, 1991), making our work the �rst

that fully automatically veri�es these examples. Additionally, for both the veri�cation

of the ARC from §4.2.2 and an FAA-based readers-writer lock, we outperform Caper.

Precisely these veri�cations feature the problematic disjunction pattern that motivated

this work.

Backtracking. Caper, the original Diaframe, and our fork of Diaframe, use some

form of backtracking. We distinguish between local backtracking (i.e., determining an

appropriate rule to apply) and global backtracking (i.e., going back to try a di�erent rule,

if veri�cation fails). Caper uses global backtracking for all its examples. As noted by Wolf

et al. (2021), this causes unstable veri�cation times for failing veri�cation attempts. The

original Diaframe uses local backtracking for all its examples, and global backtracking

in 12/24 examples. Although the veri�cation times were stable when benchmarking

failing examples in the original Diaframe, global backtracking still makes it harder to

debug failing veri�cation attempts. In our fork of Diaframe, the veri�cation times of

these failing examples are still stable, yet global backtracking is only required for 1/24

examples: Peterson’s algorithm. The veri�cation of this example also su�ers from the

biggest slowdown. It is worth noting that the proofs of the MCS lock (Mellor-Crummey

and Scott, 1991) and the CLH lock (Magnusson et al., 1994) involve goals with 4 invariants

in the proof context, but due to our connection-based approach, no global backtracking is

needed to determine which invariant to access. The veri�cation times for these examples

are well below 2 minutes.

Ground connections. The veri�cations use Diaframe’s 5 existing hint libraries for

ghost resources, to which we added a modest amount of 3 ground connections (i.e.,

disjunctive patterns in ghost-state reasoning that were not expressible in the original
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Diaframe). Namely, the rules for the pure and token ground connections from §4.5.3, and

an additional ground connection for the ticket ghost theory that is used in the veri�cation

of the ticket lock and barrier.

Coarse-grained concurrency. Although we target veri�cation of programs with

�ne-grained concurrency, our techniques are also applicable for coarse-grained con-

currency. In general, the coarse-grained concurrent setting is easier: invariants in

�ne-grained concurrency need to be established after every program step, while (lock)

invariants in coarse-grained concurrency only need to be established when the lock

is released. Our benchmark includes three examples with coarse-grained concurrency:

lclist, lclist extra and rwlock duolock. These veri�cations have been carried out in a

modular fashion, on top of independently veri�ed lock speci�cations.

4.8 Related Work

Focusing and connection calculi. Focusing (Andreoli, 1992; Simmons, 2014; Liang

and Miller, 2009) reduces the search space of proofs by limiting backtracking to the choice

of focus. Focusing by itself does not directly address the issue of the irrelevance of rule

applications, in particular of unnecessary disjunction elimination. Ordinarily, focusing

stops at a disjunction and switches to the inversion phase in which the disjunction is

eagerly split. There is no explicit mechanism to limit the choice of focus to formulas

whose decomposition contributes to the �nal derivation.

Connection calculi (Waaler, 2001; Wallen, 1990; Otten and Kreitz, 1995) address both

the issues of non-permutability and irrelevance with connection-guided proof search.

They identify a connection �rst, then in essence directly reduce the sequent to obtain the

initial sequent (Wallen, 1990, §3). Somewhat similarly, our approach relies on identifying

a connection between a positive atom occurrence on the right and a (uni�able) atom

occurring in the target of a hypothesis. Our connection-based method is a simpli�ed

version of the original concept, retaining only a general analogy. Connection calculi

develop this basic idea much further and achieve completeness for speci�c logics, such as

intuitionistic propositional or �rst-order logic. The cost is substantial complication of the

systems and di�culty in transporting the idea to other frameworks. The calculus from

§4.3 could be made complete by labeling the formulas with intuitionistic pre�xes like

in the free variable calculi (Waaler, 2001, §4) related to connection calculi. The pre�xes

would describe where each formula occurrence “originates from”, so the implication-

introduction rule does not need to “forget” the other disjuncts: the pre�xes enforce that

hypotheses can be used only for “their” disjuncts.

Sequent calculi for BI. Separation logic may be seen as a particular theory in (a

variant of) the logic of Bunched Implications (BI), which was introduced in proof-theoretic

sequent-calculus formulation by O’Hearn and Pym (1999) and Pym (2002). A focused

sequent calculus for BI was devised and shown complete by Gheorghiu and Marin (2021).

They handle disjunction on the left using an unfocused left-elimination rule, which

is not connection-driven nor goal-directed in the sense of connection calculi. There

exist complete connection calculi for propositional BI (Galmiche and Méry, 2002) and

multiplicative intuitionistic linear logic (Galmiche and Méry, 2018), but it is unclear if

they can be extended to more complex logics such as concurrent separation logic, nor if
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they can be implemented e�ciently in a general-purpose proof assistant such as Coq.

First-order/symbolic heap separation logic solvers. The literature provides var-
ious complete solvers for fragments of separation logic (Piskac et al., 2014b; Reynolds

et al., 2016; Lee and Park, 2014), also with inductive representation predicates (Le et al.,

2018; Piskac et al., 2014a). Proper support for inductive representation predicates is

lacking in our work. The mentioned solvers enjoy excellent proof automation on their

fragments, but none of their fragments cover all the connectives we consider—namely,

the combination of magic wand, disjunction and quanti�ers.

Fine-grained concurrency. Voila (Wolf et al., 2021) and Starling (Windsor et al.,

2017) are other tools for semi-automated veri�cation of �ne-grained concurrent programs.

Both are proof outline checkers and require annotations before and after each program

instruction—these annotations ensure the required case distinctions are made. Such

annotations are not required in our work. Voila can, however, prove the stronger notion

of logical atomicity, which was added to Diaframe recently (Chapter 3). A notable

exception to the lower proof burden is in the veri�cation of Peterson’s algorithm, where

Starling’s constraint-based approach seems a better �t.
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Chapter 5

Uni�cation for Subformula
Linking under Quanti�ers

5.1 Introduction

Suppose you are faced with the following proof obligation:

(∀𝑥 . 𝑃𝑥 → ∃𝑦. 𝑄𝑥𝑦) ` ∃𝑦. ∃𝑧. 𝑄 (𝑓 𝑧)𝑦. (5.1)

What is the easiest simpler proof obligation with which you could prove this entailment?

After some inspection, one can see that ∃𝑧. 𝑃 (𝑓 𝑧) su�ces. But how does one compute

this in general, given a single hypothesis and goal? In particular, interdependencies of

variables can be quite challenging.

We follow Chaudhuri (2013) and call this problem subformula linking. Subformula

linking is used for recent work on ‘gestural’ theorem proving for intuitionistic �rst-order

logic, which continues work on proof by pointing by Bertot et al. (1994). One gestural

prover is ProfInt (Chaudhuri, 2021, 2023), where one can link two subformulas by selecting

them with a mouseclick. Another gestural prover is Actema (Donato et al., 2022), where

one can drag and drop a hypothesis on a goal, prompting the system to link subformulas,

and compute a remaining proof obligation.

A variant of subformula linking also shows up in other logics. The framing problem

(Berdine et al., 2005; Kassios, 2006) in separation logic is about canceling occurrences of

the same atom in the hypothesis and goal. For example, we may wish to cancel out (or

‘frame’) the atom 𝑅 in 𝑅 ∗𝑄 ` ∃𝑥 . 𝑆 𝑥 ∗ 𝑅, and continue by proving 𝑄 ` ∃𝑥 . 𝑆 𝑥 . The Iris
framework for concurrent separation logic in Coq (Jung et al., 2015, 2016; Krebbers et al.,

2017b; Jung et al., 2018b; Krebbers et al., 2017a, 2018) has a tactic called iFrame, which

can perform the above framing. The implementation of this tactic essentially solves a

subformula linking problem.

The previous examples all originate from interactive theorem proving. However,

subformula linking is also useful in the setting of automated theorem proving. Diaframe—

a recent tool for automated proofs of concurrent programs using Iris in Coq, presented

in Chapters 2 to 4—also makes (implicit) use of subformula linking. Consider a (slightly
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simpli�ed)
1
veri�cation goal in Diaframe that occurs in the veri�cation of Courtois et al.

(1971)’s classic readers-writer lock:

(∀𝑅. 𝑅 −∗ ∃𝛾 . is lock𝛾 𝑣 𝑅) ` ∃𝛾1𝛾2 . is lock𝛾1 𝑣 (𝑆 𝛾2). (5.2)

This entailment is similar to the previous example, but it uses higher-order quanti�ca-

tion and the magic wand (−∗), which is the substructural version of implication (→) in

separation logic. The is lock predicate (Hobor et al., 2008; Dinsdale-Young et al., 2010)
states that value 𝑣 is a lock with name 𝛾 , and guards resource 𝑅—although the precise

semantics does not matter for now: it should be viewed as an abstract predicate. The

key characteristic of Equation (5.2) is that we want to simplify it to ∃𝛾2 . 𝑆 𝛾2, a goal that
Diaframe can prove automatically.

Unfortunately, previous work on subformula linking does not produce satisfactory

solutions for these examples. In the realm of �rst-order logic, Actema (Donato et al.,

2022) cannot establish a link for Equation (5.1) and thus fails. While ProfInt (Chaudhuri,

2021, 2023) can establish links, there are many candidate links, and not all of them are

provable (i.e., some are equivalent to ⊥). We could backtrack on all candidate links,

but that would be detrimental for performance when applied to proof automation for

concurrent programs (as argued in Chapter 4). In the realm of separation logic, the

examples are simply out of scope of Iris’s iFrame because it does not consider subterms

of the hypothesis.

Quanti�ers pose problems for existing approaches to subformula linking. To un-

derstand why, we brie�y discuss the setup of existing approaches for linking under

quanti�ers. ProfInt and Actema have recursive procedures that traverse the hypothesis

and goal to �nd a shared atom. When both the hypothesis and goal are a logical con-

nective (i.e., not an atom), one needs to choose to either proceed in the hypothesis or

goal. While this choice is unspeci�ed in the mathematical presentation of these systems

(as a non-deterministic inductive relation), an implementation needs to make a concrete

choice. This choice matters—just like it matters in which order the ordinary proof rules

for introduction and elimination are used—and might result in �nding di�erent links,

or no links at all. As the paper on ProfInt (Chaudhuri, 2021, §2.1) remarks, this is a

challenging problem:

Resolving this ambiguity is going to be as hard as fully automated proof

search, which will therefore not be recursively solvable as soon as we intro-

duce quanti�ers.

Nonetheless, to make subformula linking usable—for example to develop better ap-

proaches for automated program veri�cation—one should try to rule out as many useless

or blatantly false linkings. We describe how ProfInt and Actema deal with this problem

in the context of quanti�ers, their limitations, and how we address these.

ProfInt establishes unwanted links due to scoping issues. ProfInt (Chaudhuri,

2021) links atoms by posing equality constraints. Syntactically equal predicates are linked

by requiring the user to prove that all their arguments are equal, e.g., 𝑃 𝑥 ` 𝑃 𝑦 will be

1
Iris’s update modality |V is omitted from Equation (5.2) and the remaining proof obligation |V∃𝛾2 . 𝑆 𝛾2.

Because |V𝑆 𝛾 ′2 is not provable for any constant 𝛾 ′2, it is crucial that we keep the existential quanti�cation, and

do not prematurely instantiate 𝛾2 with an evar.
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reduced to 𝑥 � 𝑦. Although this reduction seems innocent, it means that ProfInt can

establish links under quanti�ers regardless of whether the order of traversal respects

variable scoping. For example, ProfInt can establish two links for ∃𝑥 . 𝑃 𝑥 ` ∃𝑦. 𝑃 𝑦.
The �rst link produces the tautology ∀𝑥 . ∃𝑦. 𝑥 � 𝑦 as its simpli�cation. The second

link produces ∃𝑦. ∀𝑥 . 𝑥 � 𝑦, which is logically equivalent to false (if the domain of

quanti�cation is non-trivial). To use subformula linking in automated theorem proving,

it would be helpful if such unwanted links are simply ruled out altogether. In particular,

if there are no sensible links at all, this means that the automation can immediately move

on to the next hypothesis without having to backtrack.

Actema cannot establish desired links. Actema (Donato et al., 2022) rules out some

of ProfInt’s unwanted links, but it actually rules out too many links. Actema uses

uni�cation to determine the appropriate order to traverse below quanti�ers. If two atoms

are not uni�able, they cannot be linked: 𝑃 𝑥 ` 𝑃 𝑦 will thus not be reduced to 𝑥 � 𝑦 if

𝑥 and 𝑦 are di�erent variables. When linking the previous example ∃𝑥 . 𝑃 𝑥 ` ∃𝑦. 𝑃 𝑦,
Actema will unify 𝑦 on the right-hand side (i.e., introduce the ∃ in the goal) with the

𝑥 obtained from the left-hand side (i.e., by eliminating the ∃ in the hypothesis). This

can only be done if the ∃ in the hypothesis is eliminated �rst—which rules out the

unwanted/ill-scoped linking ProfInt �nds.

Actema uses uni�cation whenever quanti�ers need to be instantiated with a speci�c

term (i.e., ∀-quanti�ers in hypotheses/the ‘left’, and ∃-quanti�ers in goals/the ‘right’).

For example, Actema �nds that 𝑥 in Equation (5.1) must be of shape 𝑓 ?𝑧 for some

unknown 𝑧, since this causes the arguments of 𝑄 to match syntactically. Actema has

two rules available to derive a link: one for when 𝑥 is uni�ed with a concrete term 𝑡 ,

and one for when 𝑥 does not get uni�ed at all. Unfortunately, in Equation (5.1), neither

rule is applicable—although 𝑥 has been uni�ed with 𝑓 ?𝑧, it contains the uninstantiated
?𝑧, meaning 𝑓 ?𝑧 is not a concrete term. As such, Actema cannot establish a link for

Equation (5.1).

Our approach: Quantifying on the Uninstantiated. We propose a new system

called QU for linking subformulas under quanti�ers. Like Actema, we use uni�cation

to rule out unwanted links due to scoping errors. However, QU improves upon Actema

by being able to link subformulas with non-trivial quanti�er instantiation, such as the

examples in this section. Our approach is toQuantify on the Uninstantiated (QU). Consider

Equation (5.1), where the 𝑥 gets uni�ed with 𝑓 ?𝑧, and ?𝑧 is uninstantiated. QU quanti�es

precisely on this 𝑧, i.e., we produce the simpli�cation ∃𝑧. 𝑃 (𝑓 𝑧). On the implementa-

tion level, we use evars (existential variables) and convert these back into existential

quanti�ers.

Anti goals. QU does not specify if hypothesis-rules (‘left’ rules) or goal-rules (‘right’

rules) should be given priority when mixing quanti�ers with the propositional connec-

tives (conjunction, disjunction, implication)—this remains an open problem in general

subformula linking. Both the Actema (Donato et al., 2022) and ProfInt (Chaudhuri, 2023)

implementation use heuristics and/or backtracking to make this choice, and so do we.

QU nevertheless helps in eliminating unwanted links from the search space.

Applications. Quanti�ers are problematic for subformula linking regardless of the

logic of the system—i.e., �rst-order, higher-order, and separation logic systems face

essentially the same problem. The idea of QU is not tied to a speci�c logic, however. To
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demonstrate this, we use QU to improve Iris’s iFrame tactic for higher-order separation

logic—making it strictly more powerful, with comparable performance. We also explain

how Diaframe makes use of QU.

Contributions and artifacts.

• We present the QU rules for linking subformulas under quanti�ers (§ 5.3). We

formally prove in Coq that our system lies between Actema and ProfInt, using a

deep embedding of �rst-order logic by Kirst et al. (2022).

• We present a simple, shallowly embedded subformula linking procedure in Coq

(§5.4). This demonstrates that QU can be implemented and used inside Coq.

• We extend and improve Iris’s iFrame tactic with the QU rules (§5.5.1), demonstrating

the practical applicability of our approach.

• We describe how Diaframe uses the QU rules to verify Courtois et al. (1971)’s

readers-writer lock (§5.5.2).

We start with some background on subformula linking (§ 5.2). We conclude with an

evaluation of the improved iFrame (§5.6) and a discussion of related work (§5.7). The

Coq sources of these artifacts are in the supplementary material (Mulder and Krebbers,

2023b).

5.2 Background on Subformula Linking

To provide background on subformula linking and to compare existing systems, we give

a uniform presentation of subformula linking (§5.2.1), and formulate ProfInt (§5.2.2) and

Actema (§5.2.3) as instances.
2
Although many rules are shared by ProfInt and Actema,

their di�erences are signi�cant for the links they can derive. We give examples where

ProfInt establishes unwanted links due to scoping issues with quanti�ers, and where

Actema cannot establish desired links, before presenting our system QU (§5.3).

5.2.1 Subformula Linking Judgment
We consider �rst-order intuitionistic logic with equality (our implementations in § 5.4

and 5.5 scale to higher-order separation logic). Terms, atoms, propositions, and proof

contexts are inductively de�ned as:

𝑡, 𝑠 ::= 𝑥 | 𝑓 ®𝑡
𝐴 ::= ⊥ | > | 𝑃®𝑡 | 𝑡 � 𝑠

𝐻,𝐺,𝑂 ::= 𝐴 | 𝐻 ∧ 𝐻 | 𝐻 ∨ 𝐻 | 𝐻 → 𝐻 | ∀𝑥 . 𝐻 | ∃𝑥 . 𝐻
Δ ::= · | 𝐻,Δ

Predicates 𝑃 and functions 𝑓 have an arity 𝑛 and take a list of terms of length 𝑛. For

two lists ®𝑡 = 𝑡1, . . . , 𝑡𝑛 and ®𝑠 = 𝑠1, . . . , 𝑡𝑛 of the same length, we will write ®𝑡 � ®𝑠 for
𝑡1 � 𝑠1 ∧ . . . ∧ 𝑡𝑛 � 𝑠𝑛 . If both lists are empty, ®𝑡 � ®𝑠 is just >.

2
We discuss di�erences between the original formulation of ProfInt and Actema and our uni�ed presentation

in §5.7.
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L∧
𝐻𝑖 f [𝑂] � 𝐺 𝑖 ∈ {1, 2}
(𝐻1 ∧ 𝐻2) f [𝑂] � 𝐺

L∨
𝐻𝑖 f [𝑂] � 𝐺 𝑖 ∈ {1, 2}

(𝐻1 ∨ 𝐻2) f [𝑂 ∧ (𝐻3−𝑖 → 𝐺)] � 𝐺

L→
𝐻2 f [𝑂] � 𝐺

(𝐻1 → 𝐻2) f [𝐻1 ∧𝑂] � 𝐺

L∃
∀𝑥 . 𝐻 f [𝑂] � 𝐺
(∃𝑥 . 𝐻 ) f [∀𝑥 . 𝑂] � 𝐺

L∀
∀𝑥 . 𝐻 f [𝑂] � 𝐺
(∀𝑥 . 𝐻 ) f [∃𝑥 . 𝑂] � 𝐺

R∧
𝐻 f [𝑂] � 𝐺𝑖 𝑖 ∈ {1, 2}
𝐻 f [𝑂 ∧𝐺3−𝑖 ] � 𝐺1 ∧𝐺2

R∨
𝐻 f [𝑂] � 𝐺𝑖 𝑖 ∈ {1, 2}
𝐻 f [𝐺3−𝑖 ∨𝑂] � 𝐺1 ∨𝐺2

R→
𝐻 f [𝑂] � 𝐺2

𝐻 f [𝐺1 → 𝑂] � 𝐺1 → 𝐺2

R∀
∀𝑥 . 𝐻 f [𝑂] � 𝐺
𝐻 f [∀𝑥 . 𝑂] � ∀𝑥 . 𝐺

R∃
∀𝑥 . 𝐻 f [𝑂] � 𝐺
𝐻 f [∃𝑥 . 𝑂] � ∃𝑥 . 𝐺

(a) Rules that are shared by Actema and ProfInt.

Cong-profint

𝑃®𝑡 f
[®𝑡 � ®𝑠] � 𝑃®𝑠

(b) Subformula rules speci�c

to ProfInt.

Asmp-actema

𝐴 f [>] � 𝐴

L∀𝑛-actema
𝐻 [𝑡/𝑥] f [𝑂] � 𝐺
(∀𝑥 . 𝐻 ) f [𝑂] � 𝐺

R∃𝑛-actema
𝐻 f [𝑂] � 𝐺 [𝑡/𝑥]
𝐻 f [𝑂] � ∃𝑥 . 𝐺

(c) Subformula rules speci�c to Actema.

Figure 5.1: Subformula rules in ProfInt and Actema.

We interpret the judgment Δ ` 𝐺 as

∧
𝐻 ∈Δ 𝐻 ` 𝐺 , where 𝐻 ` 𝐺 is inductively de�ned

using the usual rules for introduction and elimination of �rst-order intuitionistic logic.

To provide a uniform formulation of subformula linking, we consider the linking

judgment 𝐻 f [𝑂] � 𝐺 , which says that given a hypothesis 𝐻 and goal 𝐺 , it su�ces to

prove the simpli�cation 𝑂 instead of 𝐺 .

We call a derivation of 𝐻 f [𝑂] � 𝐺 a linkage. Each linkage should satisfy 𝐻,𝑂 ` 𝐺 ,
which trivially gives us the following derivable inference rule:

link-apply

𝐻 ∈ Δ 𝐻 f [𝑂] � 𝐺 Δ ` 𝑂
Δ ` 𝐺

In ProfInt and Actema, the user initiates this rule graphically by pointing out the common

subformulas in 𝐻 and 𝐺 , or by dragging and dropping. ProfInt and Actema are then

responsible for automatically �nding a linkage with simpli�cation 𝑂 , allowing the user

to continue with obligation Δ ` 𝑂 .
The inference rules for establishing 𝐻 f [𝑂] � 𝐺 in Pro�nt and Actema will be given

as inductively-de�ned relations in § 5.2.2 and 5.2.3. These relations should be interpreted
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as (non-deterministic) recursive ‘procedures’ that compute an appropriate 𝑂 for a given

𝐻 and 𝐺 . That is, the rules will follow the structure of the hypothesis 𝐻 and goal 𝐺 . We

use the convention to put ‘outputs’ of relations, such as 𝑂 , between brackets [ and ];
other parameters are ‘inputs’.

5.2.2 Rules for ProfInt
The rules for ProfInt’s linking judgment 𝐻 f [𝑂] � 𝐺 are given in Figures 5.1a and 5.1b.

Their purpose is to �nd a shared atom in 𝐻 and 𝐺 that can be linked. The base case is

Cong-profint in Figure 5.1b. This rule applies if the hypothesis and goal are the same

predicate 𝑃 , resulting in a simpli�cation that says their arguments should be equal.

The recursive rules in Figure 5.1a traverse the formula in a non-deterministic fashion

to reach the base case. They come in two categories: ‘left’ rules for the hypothesis

𝐻 and ‘right’ rules for the goal 𝐺 . All rules compute a simpli�cation 𝑂 based on the

simpli�cation for the recursive call.

If the hypothesis is a conjunction 𝐻1 ∧ 𝐻2, rule L∧ proceeds in either 𝐻1 or 𝐻2

and leaves the simpli�cation 𝑂 unchanged. If the hypothesis is a disjunction 𝐻1 ∨ 𝐻2,

rule L∨ again proceeds in either 𝐻1 or 𝐻2 but adds the conjunct 𝐻1 → 𝐺 or 𝐻2 → 𝐺 to

the simpli�cation 𝑂 in order to account for the other disjunct. If the hypothesis is an

implication 𝐻1 → 𝐻2, rule L→ adds the premise 𝐻1 as a conjunct to the simpli�cation𝑂 .

If the hypothesis is a quanti�er, rules L∃ and L∀ proceed under the quanti�er. They add

the opposite quanti�er to the output 𝑂 , since we are in a negative position. The ‘right’

rules are mostly dual to the ‘left’ rules.

Let us demonstrate these rules on an example. Suppose we have the hypothesis

(𝐴→ (𝐵 ∧𝐶)) and goal 𝐵 ∧ 𝐷 , where 𝐴, 𝐵, 𝐶 and 𝐷 are atoms (0-ary predicates), then:

L→

L∧1

R∧1

Cong-profint

𝐵 f [>] � 𝐵
𝐵 f [> ∧ 𝐷] � 𝐵 ∧ 𝐷

(𝐵 ∧𝐶) f [> ∧ 𝐷] � 𝐵 ∧ 𝐷
𝐴→ (𝐵 ∧𝐶) f [𝐴 ∧ (> ∧ 𝐷)] � 𝐵 ∧ 𝐷

When using ProfInt’s implementation (Chaudhuri, 2023), the user does not have to

construct this derivation by hand. Instead, the user clicks on the occurrences of 𝐵 in

𝐻 and 𝐺 . This click instructs the implementation to derive the linking judgment, and

to transform goal 𝐵 ∧ 𝐷 into 𝐴 ∧ (> ∧ 𝐷) with link-apply. (Both ProfInt and our

implementation in §5.5 remove the super�uous occurrence of >, i.e., give 𝐴 ∧ 𝐷 . We

ignore these simpli�cations for brevity’s sake.) This example shows that by clicking

on the occurrences of 𝐵 in 𝐻 and 𝐺 , ProfInt essentially eliminates an implication and a

conjunction.

Non-determinism. Linking is non-deterministic, i.e., for the same hypothesis 𝐻 and

goal 𝐺 one can �nd di�erent simpli�cations 𝑂1 and 𝑂2 with 𝐻 f [𝑂1] � 𝐺 and

𝐻 f [𝑂2] � 𝐺 . In the above derivation, we could have used R∧1 �rst, resulting in the

simpli�cation ((𝐴∧>)∧𝐷). In this case, the choice is immaterial, since the simpli�cations

are equiderivable, i.e., (𝐴 ∧ >) ∧ 𝐷 a` 𝐴 ∧ (> ∧ 𝐷).
In general, the rule order matters. Consider �nding an 𝑂 with (𝐴 → 𝐵) f [𝑂] �

(𝐴→ 𝐵) ∨𝐶 . By prioritizing the ‘left’ rules, we �nd𝑂1 = 𝐴 ∧ (𝐶 ∨ (𝐴→ >)) using L→,
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R∨1, R→. By prioritizing the right rules, we �nd 𝑂2 = 𝐶 ∨ (𝐴 → (𝐴 ∧ >)) using R∨1,
R→, L→. The �rst simpli�cation results in information loss: 𝑂1 is equivalent to 𝐴. The

second simpli�cation 𝑂2 is equivalent to >, and thus desired.

Picking the right order of rules is non-trivial. In this example we see that R∨
(disjunction introduction) should take priority over L→ (implication elimination), but

this does not hold in general. For many examples, one also wants to prioritize L∨
(disjunction elimination) over R∨ (disjunction introduction)—but what if the disjunc-

tion to eliminate resides in the conclusion of an implication? (For example, consider

((𝐴→ 𝐴) → (𝐵 ∨𝐶)) f [𝑂] � 𝐵 ∨𝐶 .)
The implementations of Pro�nt, Actema and QU use heuristics to determine the rule

order. Our goal is not to improve these heuristics, but to design rules for quanti�ers that

exclude linkages that are blatantly false due to scoping issues.

Problem: Pro�nt establishes unwanted links due to scoping issues. Suppose we

want to construct a linkage (∀𝑥 . ∃𝑦. 𝑄𝑥𝑦)f [𝑂] � ∃𝑧. 𝑄𝑡𝑧. Using the following derivation
we �nd 𝑂 = ∃𝑥 . ∀𝑦. ∃𝑧. 𝑥 � 𝑡 ∧ 𝑦 � 𝑧:

L∀
∀𝑥 .

L∃
∀𝑦.

R∃
∀𝑧.

Cong-profint

𝑄𝑥𝑦 f [𝑥 � 𝑡 ∧ 𝑦 � 𝑧] � 𝑄𝑡𝑧
𝑄𝑥𝑦 f [∃𝑧. 𝑥 � 𝑡 ∧ 𝑦 � 𝑧] � ∃𝑧. 𝑄𝑡𝑧

(∃𝑦. 𝑄𝑥𝑦) f [∀𝑦. ∃𝑧. 𝑥 � 𝑡 ∧ 𝑦 � 𝑧] � ∃𝑧. 𝑄𝑡𝑧
(∀𝑥 . ∃𝑦. 𝑄𝑥𝑦) f [∃𝑥 . ∀𝑦. ∃𝑧. 𝑥 � 𝑡 ∧ 𝑦 � 𝑧] � ∃𝑧. 𝑄𝑡𝑧

This is the desired simpli�cation, since it is a tautology (pick 𝑥 = 𝑡 and 𝑧 = 𝑦). In fact,

ProfInt has additional simpli�cation rules that can reduce 𝑂 to just >.
Unfortunately, the heuristics of ProfInt’s implementation prioritize the ‘right’ rules,

resulting in:

R∃
∀𝑧.

L∀
∀𝑥 .

L∃
∀𝑦.

Cong-profint

𝑄𝑥𝑦 f [𝑥 � 𝑡 ∧ 𝑦 � 𝑧] � 𝑄𝑡𝑧
(∃𝑦. 𝑄𝑥𝑦) f [∀𝑦. 𝑥 � 𝑡 ∧ 𝑦 � 𝑧] � 𝑄𝑡𝑧

(∀𝑥 . ∃𝑦. 𝑄𝑥𝑦) f [∃𝑥 . ∀𝑦. 𝑥 � 𝑡 ∧ 𝑦 � 𝑧] � 𝑄𝑡𝑧
(∀𝑥 . ∃𝑦. 𝑄𝑥𝑦) f [∃𝑧. ∃𝑥 . ∀𝑦. 𝑥 � 𝑡 ∧ 𝑦 � 𝑧] � ∃𝑧. 𝑄𝑡𝑧

This is problematic, since this simpli�cation is logically equivalent to ⊥ (assuming the

domain is non-trivial). There is no way we could pick a 𝑧 that is equal to every 𝑦. This is

the result of a blatant scoping issue: we have mistakenly used existential introduction

(R∃) before existential elimination (L∃). We would like this derivation to be ruled out.

5.2.3 Rules for Actema
Actema takes a di�erent approach for linking subformulas under quanti�ers than Pro�nt.

This approach avoids scoping issues, but results in a failure to �nd other desired links.

The rules for Actema’s linking judgment 𝐻 f [𝑂] � 𝐺 are given in Figures 5.1a

and 5.1c. Instead of generating a simpli�cation that involves equalities, Actema uses

uni�cation to determine appropriate ways to eliminate universal quanti�ers, and introduce

existential quanti�ers. The base case Asmp-actema requires the atoms to match exactly.
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This requirement can be met under quanti�ers since Actema has the rules L∀𝑛-actema
and R∃𝑛-actema. The premises of these rules allow one to instantiate the quanti�er with

a speci�c term 𝑡 , which we are free to choose. For example, Actema can directly �nd

𝑃 𝑡 f [>] � ∃𝑥 . 𝑃 𝑥 with R∃𝑛-actema and Asmp-actema by instantiating 𝑥 with 𝑡 .

This begs the question: how does one automatically �nd appropriate terms for

R∃𝑛-actema? This can be done using evars (existential variables), which we denote as

?𝑡 . Instead of choosing a concrete term 𝑡 in R∃𝑛-actema upfront, evars allow one to

postpone this choice. As soon as we learn an appropriate concrete term 𝑠 for ?𝑡 , we
instantiate ?𝑡 with 𝑠—and the derivation behaves as if we had chosen 𝑠 all along.

The Asmp-actema rule prompts appropriate instantiations of evars. Crucially, an

evar ?𝑡 can only be instantiated with term 𝑠 if the variables mentioned by 𝑠 were in

scope when ?𝑡 was created—instantiation fails otherwise. Such failures are crucial for

determining an appropriate rule order. It means that ill-scoped linkages are ruled out by

construction.

Let us reconsider the example of �nding a linkage (∀𝑥 . ∃𝑦. 𝑄𝑥𝑦) f [𝑂] � ∃𝑧. 𝑄𝑡𝑧
from §5.2.2. If one were to start with R∃𝑛-actema, one needs to instantiate the evar

?𝑧 with a variable 𝑦, which is not in scope when R∃𝑛-actema was used. This fails,

prompting Actema to try the correct rule order, i.e., prioritizing the ‘left’ rules, resulting

in the desired simpli�cation 𝑂 = ∀𝑦. >.
Uni�cation guides Actema in the search for an appropriate rule order. In some

cases, uni�cation rules out a bad linkage completely. Consider (∀𝑥 . ∃𝑦. 𝑅 𝑥 𝑦) f [𝑂] �
∃𝑧. ∀𝑥 ′. 𝑅 𝑥 ′ 𝑧. ProfInt would propose an unprovable simpli�cation𝑂 , while Actema fails

to establish a linkage. From a proof automation point of view (e.g., for our applications in

§5.5), Actema’s behavior of failing instead of �nding an unprovable linkage is preferable.

It prompts the automation to consider another hypothesis for �nding a linkage.

Problem: Actema cannot establish desired links. We have seen that uni�cation

allows Actema to rule out inappropriate linkages. Unfortunately, it rules out linkages too

aggressively—some linkages that one might expect to obtain are also ruled out. This can

happen when the order of related quanti�ers in hypothesis and goal do not match, like

in:

(∀𝑥 . 𝑃𝑥 →∃𝑦. 𝑄𝑥𝑦) f [𝑂] � ∃𝑧. ∃𝑥 ′. 𝑄 (𝑓 𝑥 ′) 𝑧 (5.3)

One would expect to �nd 𝑂 = ∃𝑥 . 𝑃 (𝑓 𝑥) for Equation (5.3), but this linkage is not

derivable in Actema, and neither is any other𝑂 . To see why, note that the desired 𝑧 in the

goal is obtained from the existentially quanti�ed𝑦 in the hypothesis. This means we must

start with a ‘left’ rule for the universal quanti�er, choosing between L∀𝑛-actema and L∀.
A linkage does not exist for every 𝑥 , so L∀ fails. We would like to use L∀𝑛-actema with

some 𝑡 = 𝑓 ?𝑥 ′, but no appropriate instance for ?𝑥 ′ is in scope. We can only get access to

such an instance by �rst using R∃ twice—which means we have a circular dependency.

Note that ProfInt is able to derive a linkage for this example. However, similar to the

example in the previous section, it might use rules in the wrong order and �nd unprovable

simpli�cations 𝑂 (i.e., a simpli�cation that is logically equivalent to ⊥ if the domain is

non-trivial).
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L∀𝑄𝑈 (®𝑦 = [𝑢], 𝑡 = 𝑓 𝑢)
∀𝑢.
L→

L∃
∀𝑦.

R∃𝑄𝑈 (®𝑦 = [], 𝑡 = 𝑦)
R∃𝑄𝑈 (®𝑦 = [], 𝑡 = 𝑢)

Asmp-actema

𝑄 (𝑓 𝑢) 𝑦 f [>] � 𝑄 (𝑓 𝑢) 𝑦
𝑄 (𝑓 𝑢) 𝑦 f [>] � ∃𝑥 ′. 𝑄 (𝑓 𝑥 ′) 𝑦
𝑄 (𝑓 𝑢) 𝑦 f [>] � ∃𝑧. ∃𝑥 ′. 𝑄 (𝑓 𝑥 ′) 𝑧

(∃𝑦. 𝑄 (𝑓 𝑢) 𝑦) f [∀𝑦. >] � ∃𝑧. ∃𝑥 ′. 𝑄 (𝑓 𝑥 ′) 𝑧
(𝑃 (𝑓 𝑢) →∃𝑦. 𝑄 (𝑓 𝑢) 𝑦) f [𝑃 (𝑓 𝑢) ∧ ∀𝑦. >] � ∃𝑧. ∃𝑥 ′. 𝑄 (𝑓 𝑥 ′) 𝑧

(∀𝑥 . 𝑃𝑥 →∃𝑦. 𝑄𝑥𝑦) f [∃𝑢. 𝑃 (𝑓 𝑢) ∧ ∀𝑦. >] � ∃𝑧. ∃𝑥 ′. 𝑄 (𝑓 𝑥 ′) 𝑧

Figure 5.2: An example linkage in QU.

5.3 Quantifying on the Uninstantiated

We present our system Quantifying on the Uninstantiated (QU). Compared to Actema,

we do not choose between instantiation or quanti�cation—rather, we quantify precisely

on the parts that remain uninstantiated. We start by discussing the rules of QU (§5.3.1)

and explain how QU is used on examples (§5.3.2). We �nally discuss the proof-theoretic

properties of QU (§5.3.3)—we show that the strength of the linkages from QU lies between

Actema and ProfInt.

5.3.1 Rules for QU

QU features the rules from Figure 5.1a, except L∀ and R∃. We have Asmp-actema as a

base case, and the following rules for existential and universal quanti�ers:

R∃𝑄𝑈

∀®𝑦. 𝐻 f [𝑂] � 𝐺 [𝑡/𝑥]
𝐻 f [∃®𝑦. 𝑂] � ∃𝑥 . 𝐺

L∀𝑄𝑈

∀®𝑦. 𝐻 [𝑡/𝑥] f [𝑂] � 𝐺
(∀𝑥 . 𝐻 ) f [∃®𝑦. 𝑂] � 𝐺

We write ®𝑦 for a (possibly empty) list of variables, and the term 𝑡 can mention these

variables.

To provide an intuition for these rules, let us show that our new rule L∀𝑄𝑈 generalizes

Actema’s L∀ and L∀𝑛-actema (dually, R∃𝑄𝑈 generalizes R∃ and R∃𝑛-actema):

L∀
∀𝑥 . 𝐻 f [𝑂] � 𝐺
(∀𝑥 . 𝐻 ) f [∃𝑥 . 𝑂] � 𝐺

L∀𝑛-actema
𝐻 [𝑡/𝑥] f [𝑂] � 𝐺
(∀𝑥 . 𝐻 ) f [𝑂] � 𝐺

Similar to L∀, the premise of L∀𝑄𝑈 is quanti�ed. Similar to L∀𝑛-actema, we instanti-
ate the quanti�er with a term 𝑡 . We retain the expressivity of Actema. If we take ®𝑦 to be

the empty list, L∀𝑄𝑈 reduces directly to L∀𝑛-actema. If we take ®𝑦 to be the list with just

𝑥 ′, and 𝑡 = 𝑥 ′, L∀𝑄𝑈 is precisely L∀.
The other quanti�er rules L∃ and R∀ stay the same, since these correspond to re-

versible inference rules.
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5.3.2 QU by Example
We show how QU goes beyond Actema by deriving the linkage from the example in

§5.2.3:

(∀𝑥 . 𝑃𝑥 →∃𝑦. 𝑄𝑥𝑦) f [𝑂] � ∃𝑧. ∃𝑥 ′. 𝑄 (𝑓 𝑥 ′) 𝑧
The full derivation is included in Figure 5.2. The key step is the use of L∀𝑄𝑈 , where we

pick ®𝑦 = [𝑢] and 𝑡 = 𝑓 𝑢. Intuitively, this choice makes the arguments of 𝑄 in hypothesis

and goal match precisely, so that the Asmp-actema can be applied in the base case. We

also use R∃𝑄𝑈 twice with empty quanti�er list (i.e., ®𝑦 = []), which simpli�es to Actema’s

R∃𝑛-actema.
The application of L∀𝑄𝑈 with ®𝑦 = [𝑢] and 𝑡 = 𝑓 𝑢 in Figure 5.2 is not expressible

in Actema, and crucial for getting the desired linkage in this example. However, it is

reliant upon somehow making the correct choice for ®𝑦 and 𝑡 . Additionally, so far we

have only seen cases where ®𝑦 is a list of length at most 1. We will consider another

example to demonstrate how we can determine appropriate choices for ®𝑦 and 𝑡 , and that

we sometimes need ®𝑦 to be a longer list. We will discuss the actual implementation that

chooses ®𝑦 and 𝑡 in Coq in §5.4. The example is as follows:

(∀𝑥 . ∃𝑦. 𝑄 𝑥 𝑦) f [𝑂] � ∃𝑧. ∃𝑢. ∃𝑣 . 𝑄 (𝑔𝑢 𝑣) 𝑧 (5.4)

Consider the following partial derivation of a linkage:

L∀𝑄𝑈

∀®𝑤.
L∃
∀𝑦. 𝑄 ?𝑡 𝑦 f [. . .] � ∃𝑧. ∃𝑢. ∃𝑣 . 𝑄 (𝑔𝑢 𝑣) 𝑧
(∃𝑦. 𝑄 ?𝑡 𝑦) f [. . .] � ∃𝑧. ∃𝑢. ∃𝑣 . 𝑄 (𝑔𝑢 𝑣) 𝑧

(∀𝑥 . ∃𝑦. 𝑄 𝑥 𝑦) f [. . .] � ∃𝑧. ∃𝑢. ∃𝑣 . 𝑄 (𝑔𝑢 𝑣) 𝑧
We have chosen to instantiate 𝑡 in L∀𝑄𝑈 with an evar ?𝑡 , delaying the choice for a concrete
term. We still have to choose the ®𝑤 over which L∀𝑄𝑈 should quantify. Whatever our

choice, the next steps in the derivation of the linkage would be to apply R∃𝑄𝑈 three times.

In the base case, Asmp-actema will produce two uni�cation problems for the arguments

of 𝑄 , the easy ?𝑧 [ ®𝑤,𝑦] = 𝑦, and the harder:

?𝑡 [ ®𝑤] = 𝑔 ?𝑢 [ ®𝑤,𝑦] ?𝑣 [ ®𝑤,𝑦]
Here, we write ?𝑠 [®𝑥] for an evar ?𝑠 which has variables ®𝑥 in scope. We cannot instantiate

?𝑡 to be 𝑔 ?𝑢 [ ®𝑤,𝑦] ?𝑣 [ ®𝑤,𝑦], since the evars ?𝑢 and ?𝑣 have 𝑦 in scope, and ?𝑡 does not.
To proceed, the uni�cation algorithm now prunes the term on the right-hand side (Ziliani

and Sozeau, 2015, §4.3.1). This comes down to �rst creating new evars ?𝑢 ′[ ®𝑤] and ?𝑣 ′[ ®𝑤],
then instantiating ?𝑢 [ ®𝑤,𝑦] = ?𝑢 ′[ ®𝑤] and ?𝑣 [ ®𝑤,𝑦] = ?𝑣 ′[ ®𝑤]. At that point, the uni�cation
algorithm instantiates ?𝑡 [ ®𝑤] = 𝑔 ?𝑢 ′[ ®𝑤] ?𝑣 ′[ ®𝑤]. Let us return to our derivation, with this

?𝑡 �lled in:

L∀𝑄𝑈

∀®𝑤. (∃𝑦. 𝑄 (𝑔 ?𝑢 ′ ?𝑣 ′) 𝑦) f [∀𝑦. >] � . . .
(∀𝑥 . ∃𝑦. 𝑄 𝑥 𝑦) f [∃ ®𝑤. ∀𝑦. >] � . . .

We now want to quantify on the uninstantiated. That is, ®𝑤 will contain a variable for

each evar that remained uninstantiated in 𝑡 .3 Here we pick ®𝑤 to be the two-element

3
A reviewer pointed out that this idea is similar in spirit to the let generalization step in Hindley-Milner

type inference. Indeed, type inference for ‘let 𝑓 := (𝜆𝑥. 𝑥) in 𝑒’ will infer the type scheme ∀𝛼. 𝛼 → 𝛼 for 𝑓 ,

by quantifying over all the uninstantiated/free type variables. It would be interesting to �nd a more formal

connection between the two.
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list [𝑢 ′′; 𝑣 ′′] and instantiate ?𝑢 ′[𝑢 ′′, 𝑣 ′′] = 𝑢 ′′ and ?𝑣 ′[𝑢 ′′, 𝑣 ′′] = 𝑣 ′′. This results in the

following derivation:

L∀𝑄𝑈

∀𝑢 ′′, 𝑣 ′′. (∃𝑦. 𝑄 (𝑔𝑢 ′′ 𝑣 ′′) 𝑦) f [∀𝑦. >] � . . .
(∀𝑥 . ∃𝑦. 𝑄 𝑥 𝑦) f [∃𝑢 ′′. ∃𝑣 ′′. ∀𝑦. >] � . . .

We will explain how this can be done automatically in §5.4.3.

5.3.3 Comparison to ProfInt and Actema
We prove some results about the relative strength of Pro�nt, Actema and QU. We have

mechanized these results in Coq using the library for �rst-order logic by Kirst et al.

(2022). This library provides a deep embedding of terms, connectives, propositions, and

proofs. We inductively de�ne the three linking judgments, which we disambiguate using

subscripts. For example, 𝐻 f [𝑂] �
actema

𝐺 is the inductively-de�ned linking judgment

of Actema.

First, we prove that all linkage systems are sound:

Theorem 5.3.1 (Soundness)

(a) If 𝐻 f [𝑂] �
actema

𝐺 , then 𝐻,𝑂 ` 𝐺 .

(b) If 𝐻 f [𝑂] �
profint

𝐺 , then 𝐻,𝑂 ` 𝐺 .

(c) If 𝐻 f [𝑂] �
q
𝐺 , then 𝐻,𝑂 ` 𝐺 .

Next, we prove that all linkages that can be established by Actema, can also be

established by our system QU.

Theorem 5.3.2 (Actema vs. QU) If 𝐻 f [𝑂] �
actema

𝐺 , then 𝐻 f [𝑂] �
q
𝐺 .

This theorem holds because the quanti�er rules R∃𝑄𝑈 and L∀𝑄𝑈 of QU generalize

those of Actema (§5.3.1).

Note that this theorem states that Actema linkages are expressible in QU, which does

not guarantee that the procedure we informally describe in §5.3.2 actually �nds Actema’s

solution. This would be harder to formalize because it depends on Coq’s uni�cation

algorithm. We nevertheless think our solutions would agree with Actema. Actema only

uses L∀𝑛-actema if it can unify term 𝑡 with a concrete term. Concrete terms do not

contain evars/uninstantiated terms, so we �nd the same solution. If instead Actema uses

L∀, the term 𝑡 must have remained an evar, and so our approach chooses precisely that

evar to quantify on.

The relation between QU and ProfInt is more di�cult to formalize. Simpli�cations 𝑂

produced by a ProfInt linkage 𝐻 f [𝑂] �
profint

𝐺 involve equalities, which are absent in

the simpli�cations produced by QU. This means that the linkage systems do not produce

syntactically equal simpli�cations 𝑂 . To properly relate two linkages with di�erent

simpli�cations, we furthermore need to ensure that ProfInt and QU apply rules in the

same order. We will write a superscript 𝑝 to indicate that a linking judgment is derived

by applying the rules in 𝑝 in order. For example:

(𝐴 ∧ 𝐵) f [> ∧𝐶] � [L∧1;R∧1 ]
profint

(𝐴 ∧𝐶).

We can then relate the linkages from QU and ProfInt.



5.4. IMPLEMENTATION 118

Theorem 5.3.3 (QU vs. ProfInt) Let 𝑝 be a sequence of linking rules. If 𝐻 f [𝑂] �𝑝
q
𝐺 ,

then there is a unique 𝑂 ′ for which 𝐻 f [𝑂 ′] �𝑝
profint

𝐺 , and additionally 𝑂 ` 𝑂 ′.

In other words, for a given rule order, if QU can derive a linkage, then ProfInt can

also derive a linkage. Additionally, QU’s simpli�cation 𝑂 is at least as hard to prove as

ProfInt’s simpli�cation 𝑂 ′. Another way to read Theorem 5.3.3 is that the instantiations

made by QU are guaranteed to satisfy the equalities from ProfInt.

However, we would rather have something stronger: that the simpli�cations produced

by QU are not harder than those produced by ProfInt, i.e., 𝑂 a` 𝑂 ′. When L∀𝑄𝑈 and

R∃𝑄𝑈 are used as intended (i.e., they quantify precisely on the uninstantiated terms), we

conjecture that this is indeed the case. The way that L∀𝑄𝑈 is currently stated does not

guarantee this. Indeed, by picking a particular constant for the term 𝑡 , we could derive a

linkage that is too specialized, and thus harder to prove. Formally proving this conjecture

would require a veri�ed uni�cation algorithm for the deeply embedded logic we consider,

and a corresponding restriction on the terms 𝑡 in L∀𝑄𝑈 . We leave this endeavor for future

work.

Completeness. Chaudhuri (2021) showed that the full ProfInt linkage system is com-

plete. The full ProfInt system di�ers from the presentation in §5.2.2 in two regards: one

can link two hypotheses, and one can also link within formulas. Subformula linking

within formulas allows ProfInt to prove entailments such as

𝐴 ∨ 𝐵 ` ((𝐴→ ⊥) → ⊥) ∨ ((𝐵 → ⊥) → ⊥)

since 𝐴 → ⊥ and ⊥ can be linked within the left disjunct. This entailment is out of

reach for our linkage system, since no subformula of the hypothesis 𝐴 ∨ 𝐵 can be linked

to a subformula of the goal (note that our system only considers subformulas of the

right-hand side of an implication). This incompleteness is acceptable for the application

we have in mind, i.e., proof automation for (higher-order) separation logic—implications

do not frequently occur inside disjunctions in this setting.

5.4 Implementation

We demonstrate that QU can be e�ectively implemented in the Coq proof assistant. We

start by de�ning linkages and linkage rules for the propositions Prop of Coq’s higher-

order logic (§ 5.4.1). (This makes it di�erent from § 5.3.3 where we performed meta-

theoretic reasoning on a deep embedding of �rst-order logic.) We then de�ne simple

telescopes (§ 5.4.2), which form a building block for representing 𝑛-ary functions and

𝑛-ary quanti�cation. Telescopes allow us to state the L∀𝑄𝑈 and R∃𝑄𝑈 rules properly and

to implement custom Ltac (Delahaye, 2000) code that assists in solving the uni�cation

problems arising in QU (§5.4.3). Finally, we make the link-apply inference rule available

as a Coq tactic (§5.4.4).

5.4.1 Linkages in Coq

We start by de�ning linkages semantically in Coq:
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Class Link (H O G : Prop) :=

link sound : H ∧ O → G.

This de�nes a type class (Sozeau and Oury, 2008) called Link, for which we will de�ne

the notation LINK H f [O] � G. To construct an instance LINK H f [O] � G, one must prove

H ∧ O→ G (i.e., soundness). A semantic de�nition like this makes it particularly easy to

de�ne linkage rules as type class instances:

Instance link asmp actema A :

LINK A f [True] � A.

Proof. unfold Link; firstorder eauto. Qed.

Instance link l and 1 H1 H2 O G :

LINK H1 f [O] � G →
LINK (H1 ∧ H2) f [O] � G.

Proof. unfold Link; firstorder eauto. Qed.

Instance link l exists {A} (H O : A → Prop) G :

(∀ a, LINK (H a) f [O a] � G) →
LINK (∃ a, H a) f [∀ a, O a] � G.

Proof. unfold Link; firstorder eauto. Qed.

Instances for the other rules from Figure 5.1b are similar. The key step is to de�ne an

appropriate instance for our new rule L∀𝑄𝑈 . Let us repeat the statement from §5.3.1:

∀®𝑦. 𝐻 [𝑡/𝑥] f [𝑂] � 𝐺
(∀𝑥 . 𝐻 ) f [∃®𝑦. 𝑂] � 𝐺

Remember that the term 𝑡 can mention the variables ®𝑦. We will �rst express the rule in a

form where we allow 𝑡 to depend on exactly one variable 𝑦:

Lemma link l forall qu v1 {A} (H : A → Prop) G

{Y} (t : Y → A) (O : Y → Prop) :

(∀ (y : Y), LINK (H (t y)) f [O y] � G) →
LINK (∀ a, H a) f [∃ (y : Y), O y] � G.

Proof. unfold Link; firstorder eauto. Qed.

We have to address two issues to turn this 1-ary lemma into an instance that produces

good simpli�cations and can be applied automatically by type class search.

The �rst issue is that while the 𝑛-ary version can be derived from 1-ary function

through currying, this results in a complicated simpli�cation. We want the resulting

simpli�cation to be an 𝑛-ary existential quanti�cation, instead of a unary quanti�cation

on a product 𝑌 . In particular, we want to avoid a useless quanti�cation over u : unit if

no variables are needed. Generating an 𝑛-ary existential quanti�cation is important to

show readable goals to the user and to aid automation in making further progress. We

address this issue using telescopes to write an 𝑛-ary rule (§5.4.2).

The second issue is that of determining appropriate terms for Y, t and O. We can use

evars ?Y, ?t and ?Owhen applying this lemma, but instantiating these evars is challenging.

At some point we want to unify e.g., ?t y with a concrete term—while also instantiating

the type ?Y of y. We do not know of any existing uni�cation algorithm that supports this

kind of problem. Indeed, Coq’s default uni�cation algorithm rightfully refuses to solve

this problem. We address this issue using a custom tactic written in Ltac (§5.4.3).



5.4. IMPLEMENTATION 120

5.4.2 Simple Telescopes in Coq

Telescopes (de Bruijn, 1991) can represent (the type of) sequences of variables with

possibly dependent types. For the applications in § 5.5, we use the formalization of

(dependent) telescopes provided by the coq-std++ library (The Coq-std++ Team, 2023).
4

For brevity, the telescopes in this section do not allow dependent types.

We use telescopes to formalize 𝑛-ary existential quanti�cation in QU. For example,

for ∃(𝑥 : 𝑋 ) (𝑦 : 𝑌 ). 𝑃 𝑥 𝑦, we use ‘[𝑋 ;𝑌 ] : tele’. Telescopes give us a generic uncurried
version 𝑃 : [𝑋1; . . . ;𝑋𝑛] → Prop of 𝑃 : 𝑋1 → · · · → 𝑋𝑛 → Prop, and a generic

telescopic quanti�er
®∃𝑃 that simpli�es (i.e., is de�nitionally equal) to the 𝑛-ary existential

quanti�cation.

In the non-dependent setting, we can represent telescopes as a simple list of Types:

Definition tele : Type := list Type.

Definition teleS : Type → tele → tele := cons.

Definition teleO : tele := nil.

Notation "[tele X ; .. ; Z ]" :=

((teleS X (.. (teleS Z teleO) .. ))).

We can treat such lists themselves as a Type, by taking the product of all the Types in the

list. We can construct this product by folding over the list:

Definition tele arg (T : tele) : Type :=

fold right prod unit T.

Coercion tele arg : tele >-> Sortclass.

Check ((1, (false, tt)) : [tele nat; bool]).

After registering tele arg as a Coercion, the preceding Check indeed goes through. This

relies on Coq doing a type-level computation: it checks that tele arg [nat; bool] is

convertible to the type nat * (bool * unit). Therefore, we have that (1, (false, tt))

is of type tele arg [nat; bool].

The function type T → Propwith T : tele corresponds to an uncurried𝑛-ary function.

We can do 𝑛-ary quanti�cation on such functions by recursion on the list T:

Fixpoint tele ex {T : tele} : (T → Prop) → Prop :=

match T with

| [] ⇒ fun g : unit → Prop ⇒ g tt

| X :: T’ ⇒ fun g : (X × tele arg T’) → Prop ⇒
∃ (x : X), tele ex (fun r ⇒ g (x, r))

end.

Lemma tele ex exists {T : tele} (g : T → Prop) :

tele ex g ↔ ∃ (a : T), g a.

We have included some type annotations in tele ex to illuminate what is going on. In

the 0-ary case, we simply pass the unit element to the function of type unit → Prop.

In the (𝑛 + 1)-ary case, we existentially quantify on the �rst projection of the pair, and

recursively call tele ex to existentially quantify on the second projection.

4
The coq-std++ library (The Coq-std++ Team, 2023) de�nes tele as a custom inductive type to handle

dependent types. Furthermore, by making this inductive type universe polymorphic (Sozeau and Tabareau,

2014), coq-std++ avoids universe constraints that would otherwise restrict the usage of telescopes in larger

developments.
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Lemma tele ex exists shows that tele ex is equivalent to regular existential quanti�-

cation. Remember that to formalize R∃𝑄𝑈 and L∀𝑄𝑈 we want to avoid a regular (unary)

existential quanti�cation on a complicated type like T : tele, and instead generate 𝑛

nested existential quanti�ers.

5.4.3 Quantifying on the Uninstantiated with Ltac
We are now ready to state a version of L∀𝑄𝑈 with proper 𝑛-ary quanti�cation:

Lemma link l forall qu v2 {A} (H : A → Prop) G

{Y : tele} (t : Y → A) (O : Y → Prop) :

(∀ (y : Y), ∃ (t’ : A) (O’ : Prop),

LINK (H t’) f [O’] � G

∧ t’ = t y ∧ O’ = O y) →
LINK (∀ a, H a) f [ tele ex O ] � G.

This lemma di�ers from link l forall qu v1 in §5.4.1 in its use of Y : tele and tele ex.

Furthermore, to address the problem of unifying ?t y with a concrete term, we swap

t y with a new variable t’, and require these two to be equal (and similarly for O). This

means that when we use Coq’s type class search to establish the LINK premise, it does

not need to worry about (and is in fact oblivious of) the fact that t’ and t y should be

equal. This change also allows us to solve the uni�cation problem for Y manually: we

can determine an appropriate value for Y with some meta-programming in Ltac when

proving t’ = t y.

Let us consider the proof obligations spawned by applying link l forall qu v2. Sup-

pose we would like to prove LINK (∀ a, H a) f [ ?O ] � G. To proceed, we apply the

lemma, introduce y and make fresh evars for t’ and O’ with tactic:

eapply link l forall qu v2; intros; do 2 eexists.

After the application of this tactic, our goal is:

LINK (H ?t’) f [?O’] � G ∧ ?t’ = ?t y ∧ ?O’ = ?O y

Since the argument to H is a simple evar ?t’, the �rst conjunct can be handled by a

recursive call to the linking procedure (i.e., type class search). In particular, in the base

case Asmp-actema can instantiate ?t’ with an appropriate term if necessary. This would

not be possible for ?t y.

Let us now repeat Equation (5.4) from §5.3.2 and consider our proof obligations. We

are trying to derive:

(∀𝑥 . ∃𝑦. 𝑄 𝑥 𝑦) f [. . .] � ∃𝑧. ∃𝑢. ∃𝑣 . 𝑄 (𝑔𝑢 𝑣) 𝑧.

The combination of tactics discussed previously will �ll in an evar ?t’ for 𝑥 . The linking

procedure will (recursively) establish LINK (H ?t’) f [?O’] � G and in the process unify ?t’

with 𝑔 ?u ?v. The equality we thus wish to prove is

𝑔 ?u ?v = ?t y, (5.5)

where y is of type ?Y. The full uni�cation problem we face is

∃(𝑌 : Type). ∃(𝑡 : 𝑌 → 𝐴). ∀(𝑦 : 𝑌 ). ∃𝑢 𝑣. 𝑔𝑢 𝑣 = 𝑡 𝑦.
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Ltac solve evar tele equality :=1

lazymatch goal with2

| ` ?l = ?f ?arg ⇒3

let rec retcon tele the arg T := (* we receive the arg : tele arg T *)4

match l with5

| context [?term] ⇒ (* look through all subterms of l *)6

is evar term; (* check that the subterm term of l is an evar *)7

let X := type of term in8

let T’ := open constr:( ) in (* creates a new evar T’ *)9

unify T (teleS X T’); (* instantiates T to be X :: T’ *)10

unify term (fst the arg); (* instantiates term to be fst arg, of type X *)11

retcon tele (snd the arg) T’ (* .. now repeat this for other evars in l *)12

| ⇒ unify T teleO (* if l has no evars, unify T with nil *)13

end14

in15

let T’ := lazymatch type of arg with tele arg ?T ⇒ T end in16

retcon tele arg T’;17

exact (eq refl ) (* uni�cation can now instantiate f *)18

end.19

Figure 5.3: Ltac code for QU.

We want to quantify on the uninstantiated, so our goal is to infer Y = [tele U; V].

Evars ?u and ?v should be uni�ed with projections of y, so that the remaining uni�cation

problem can be solved by Coq. This is what the Ltac script solve evar tele equality

from Figure 5.3 does.

If we call solve evar tele equality on Equation (5.5), line 3 in Figure 5.3 will store the

left-hand side of the equality in l, and y in arg. We then read the telescope Y into variable

T’ (line 16), and call retcon tele arg T’. This will ‘retcon’ (for retroactive continuity)

the telescope T’ to be a list of the types of all uninstantiated evars in l. Additionally, it

will unify all evars with projections of arg. The recursive retcon tele achieves this by

scanning l for evars (lines 4–6),5 and then unifying T’ to be a list that starts with the

type of this evar (lines 8–10).

We then unify the evar with a projection of arg (line 11), and repeat the process until

no more evars are found (line 12 and 13). If we �nd an evar that does not have arg in

scope, the uni�cation on line 11 will fail and cause Ltac to backtrack and continue with

the next evar. This is desired: it means such evars should either not be quanti�ed on, or

be quanti�ed on by some earlier application of L∀𝑄𝑈 .

We still need to prove the equality once this is �nished. The equality in Equation (5.5)

has been reduced to

𝑔 (fst y) (fst (snd y)) = ?t y.

and ‘exact (eq refl )’
6
can make quick work of this: Coq’s uni�cation algorithm (Ziliani

5
The match context combination with is evar in lines 4–6 may seem to be an ine�cient way of �nding all

evars in a term l, since it traverses all subterms of l. However, our experiments showed it to be more e�cient

than an alternative implementation using unshelve.
6
It is crucial to use exact or refine, instead of reflexivity or apply. As mentioned here, exact uses Coq’s

newer ‘evar conv’ uni�cation algorithm, which often performs better than the older ‘w unify’ uni�cation

https://github.com/coq/coq/issues/5387#issuecomment-337551717
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and Sozeau, 2015, step 4 on page 186) is able to infer an appropriate value for t now.

The technique of ‘retroactively’ determining an appropriate list of types is similar

in spirit to those in the ‘Procrastination’ library (Guéneau, 2018). The Procrastination

library instead collects side conditions on an evar, i.e., propositions.

5.4.4 Linkage Tactic
We now have all ingredients in place to construct an instance for L∀𝑄𝑈 that Coq’s type

class search can understand.

To call the custom Ltac from §5.4.3 we do not register link l forall qu v2 as a regular

instance. Instead we add an external hint to the type class database:

Hint Extern 4 (LINK (∀ a, ) f [ ] � ) ⇒
eapply link l forall qu v2; intros ?; do 2 eexists;

split; [ solve [typeclasses eauto] | ];
split; [ solve evar tele equality | ];
exact (eq refl ) : typeclass instances.

This hint applies our specially crafted lemma, runs type class search on LINK H ?tf [?O] � G,

and then quanti�es on uninstantiated evars in ?t. The exact (eq refl ) tactic takes care

of the remaining equality on ?O.

Putting it all together. With type class instances for all the linkage rules in place, we

obtain a very simple implementation of a linkage system in Coq—in about 250 lines of

code in total. This includes the straightforward implementation of a tactic link to that

performs link-apply, omitted here. All linkages that were discussed before have the

desired result. In the supplementary material (Mulder and Krebbers, 2023b), we have

included solutions to some of the exercises in Actema’s course on �rst-order logic, to

demonstrate our linkage system.

Non-determinism. We have not speci�ed a heuristic that determines in what order

the linkage rules should be applied. By implementing the linkage rules as type class

Instances, we implicitly rely on the backtracking semantics of type class search—all

orders will be considered. This means linking only fails after all possible orders of linking

rules have been considered, which is not great from a performance perspective. Similar to

ProfInt and Actema, we use heuristics to determine the rule order in our applications in

§5.5, and thereby avoid this ine�ciency. We either have no ‘left’ rules (iFrame in §5.5.1),

or we prioritize ‘left’ rules (Diaframe in §5.5.2).

5.5 Applications

Wedemonstrate that the QU approach has practical applications outside pure intuitionistic

logic. First, we apply QU to the framing problem (Berdine et al., 2005; Kassios, 2006)

from separation logic in the context of the Iris framework for concurrent separation

logic in Coq (Jung et al., 2015, 2016; Krebbers et al., 2017b; Jung et al., 2018b; Krebbers

et al., 2017a, 2018) (§ 5.5.1). Second, we apply QU to the Iris-based proof automation

framework Diaframe described in Chapters 2 to 4 (§ 5.5.2), where we show that the

algorithm.
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automatic veri�cation of a classical readers-writer lock crucially relies on the QU rules

for subformula linking under quanti�ers.

5.5.1 Framing under Quanti�ers in Separation Logic

Separation logic (O’Hearn et al., 2001) is an extension of Hoare logic that allows one to

reason modularly about the correctness of stateful programs. We focus on the assertion

language of separation logic, which extends ordinary logic with two logical connectives

that enable this modular reasoning: the separating conjunction (∗) and magic wand (−∗).
Separating conjunction can be seen as a substructural version of conjunction (∧), which
means that we cannot use separation logic propositions 𝑃 more than once—in particular,

𝑃 ` 𝑃 ∗ 𝑃 does not hold in general. The introduction rule of separating conjunction thus

requires one to split the list of hypotheses over the conjuncts:

Δ1 ` 𝑃 Δ2 ` 𝑄
Δ1,Δ2 ` 𝑃 ∗𝑄

During program veri�cation with separation logic, one often faces proof obligations of

the form Δ, 𝑃 ` 𝑃 ∗𝐺 . In this case, there is an obvious choice for splitting the environment:

one ‘frames’ 𝑃 away, and continues with Δ ` 𝐺 (i.e., take Δ1 = 𝑃 and Δ2 = Δ). In an

interactive proof setting, one should not have to spell out the precise environments.

Iris comes with an interactive proof mode and accompanying tactics (Krebbers et al.,

2017a, 2018), whose iFrame tactic can be used to frame away hypotheses in the goal. This

tactic is implemented with a type class Frame, exactly like Link from §5.4.1. The (slightly

simpli�ed) de�nition of Frame is:

Class Frame {PROP : bi} (H G O : PROP) :=

frame : H ∗ O ` G.

Compared to Link, the Frame class involves the separating conjunction (∗) instead of the

regular conjunction (∧). Furthermore, Frame works in a generic object logic PROP of type

bi. This makes the Frame type class applicable in any Bunched Implication logic (O’Hearn

and Pym, 1999; Pym, 2002), i.e., logics that satisfy the relevant axioms for ∗ and −∗.
When trying to frame resource H in goal G, Iris runs type class search for Frame H G O.

If successful, it removes resource H from the environment, and replaces the goal with O.

Instances of the Frame type class are ‘just’ subformula linking rules in separation logic.

This is evident by comparing the following instances to Asmp-actema and R∧:
Global Instance frame here A : Frame A A emp.

Global Instance frame sep l H G1 G2 O :

Frame H G1 O →
Frame H (G1 ∗ G2) (O ∗ G2).

Framing under existential quanti�cation. To frame beneath quanti�ers, one faces

problems similar to those described in §5.2. However, there are also some di�erences that

we discuss �rst. When framing, we only look for hypotheses that appear (nearly) verbatim

in the goal—meaning there are only right rules for Frame. The existing implementation for

framing under existential quanti�ers only provides R∃ and not R∃𝑛-actema. This means

that framing could not instantiate quanti�ers, and so it fails on e.g., 𝑃 1 ` (∃𝑛. 𝑃 𝑛) ∗𝑄 .
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Having a single instance was a conscious design choice of the Iris Proof Mode: by

having two applicable Instances when the goal is existentially quanti�ed, (failing) type

class search would run twice on very similar subgoals. An 𝑛-ary existential quanti�cation

would do this 2𝑛 times, which becomes unacceptably slow.

By quantifying on the uninstantiated, we can allow framing to instantiate quanti�ers

without this exponential slowdown. Additionally, remember that the QU rule R∃𝑄𝑈 is

strictly more general than having both R∃𝑛-actema and R∃. We use the following Frame

instance, similar to the linking instance link l forall qu v2 from §5.4.3.

Lemma frame exist qu {A : Type} (G : A → PROP) H

{Y : tele} (t : Y → A) (O : Y → PROP) :

(∀ (y : Y), ∃ (t’ : A) (O’ : PROP),

Frame H (G t’) O’

∧ t’ = t y ∧ O’ = O y) →
Frame H (∃ a, G a) (bi texist O).

The main di�erence is the use of bi texist, which does 𝑛-ary existential quanti�cation

in PROP. We also reuse the tactics from §5.4.3 for proving the equalities on t’ and O’.

5.5.2 Automatic Veri�cation of a Readers-Writer Lock
The proof automation provided by Diaframe also relies on subformula linking, and as

such faces the same problems regarding quanti�ers. Diaframe has been using the QU

approach for a while, but the technique and its use were not described anywhere.

Let us consider the automatic veri�cation of the classic readers-writer lock by Courtois

et al. (1971) in Diaframe. A lock is a data structure from concurrent programming, in

charge of sharing access to a resource 𝑅 among multiple threads. It guarantees that at all

times, at most a single thread can access resource 𝑅. A readers-writer lock generalizes a

regular lock: it guarantees that either there are zero or more ‘readers’, i.e., threads with

read-only access to 𝑅, or there is a single ‘writer’ thread that can mutate 𝑅.

The classic readers-writer lock implementation by Courtois et al. (1971) is built from

two regular locks. We shall consider the veri�cation of allocating a new readers-writer

lock, which �rst allocates two regular locks. Let us �rst consider two speci�cations for

allocating a regular (spin) lock:
7

{𝑅} new lock() {𝑣 . ∃𝛾 . is lock𝛾 𝑣 𝑅} (5.6a)

{True} new lock() {𝑣 . (∀𝑅. 𝑅 −∗ ∃𝛾 . is lock𝛾 𝑣 𝑅)} (5.6b)

Speci�cation (5.6a) states that executing new lock() is safe, and returns a value 𝑣 for

which ∃𝛾 . is lock𝛾 𝑣 𝑅 holds—if we have given up resource 𝑅 before executing new lock.
Parameter 𝛾 ensures we can distinguish between di�erent locks. The is lock predicate is
part of the precondition of the other lock methods.

Speci�cation (5.6b) di�ers from (5.6a) in that one does not have to give up resource

𝑅 directly. Rather, it returns a more complicated proposition, which allows clients to

choose and hand in 𝑅 at a later point in the program execution.

Although (5.6a) is the standard lock speci�cation (Hobor et al., 2008; Dinsdale-Young

et al., 2010), (5.6b) is strictly stronger. One can (manually) verify the readers-writer lock

7
We omit Iris’s update modality |V from (5.6b) since it poses orthogonal problems with automation that are

addressed in Chapter 2.
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Table 5.1: Evaluation data of iFrame. For each project, we list the total number of lines,

the number of lines that use iFrame, and the number of lines that needed to be changed

for the new iFrame. We also list the total compilation time of the project, and the change

in compilation time with the new iFrame.

repository total lines iFrame lines lines changed total time time changed %

Iris 60156 543 - 2 8:29 -1.0%

iris-examples 22912 800 -14 10:03 -1.2%

ReLoC 14092 505 - 5 4:54 -2.0%

RustBelt 19889 840 -33 14:09 +0.3%

total 117049 2688 -54 37:37 -0.7%

with (5.6a), but (5.6b) is more useful for proof automation. When an automated veri�er

symbolically executes new lock with speci�cation (5.6a), it does not have any syntactic

indication for an appropriate choice for resource 𝑅. A wrong choice can easily lead to a

failing veri�cation (Dardinier et al., 2023). With speci�cation (5.6b), the automation can

wait for a proof obligation with shape is lock𝛾 𝑣 𝑆 to choose 𝑅 equal to 𝑆 .

This is precisely what happens when verifying the allocation of Courtois et al. (1971)’s

readers-writer lock. The allocation function �rst allocates two regular locks, for which

we will use speci�cation (5.6b). To prove that the readers-writer lock is successfully

allocated, we are faced with goal:

(∀𝑅. 𝑅 −∗ ∃𝛾 . is lock𝛾 𝑣 𝑅) ` ∃𝛾1𝛾2 . is lock𝛾1 𝑣 (𝑃 𝛾2).

Here, 𝑃 𝛾2 encodes the protocol for accessing the readers-writer lock. Since Diaframe uses

the QU rules, it can simplify this entailment to ∃𝛾2 . 𝑃 𝛾2, which Diaframe’s automation

can subsequently discharge. The QU rules are crucial: during subformula linking, 𝑅 will

be uni�ed with 𝑃 ?𝛾2, where ?𝛾2 remains uninstantiated. By quantifying precisely on

this 𝛾2, we obtain the desired linkage.

Finally, note that the readers-writer lock veri�cation involves quanti�cation over

propositions 𝑅. This shows that the QU approach scales to higher-order logic.

5.6 Evaluation of iFrame

We evaluate the scalability of QU by testing our improved iFrame tactic. We test the

improved tactic on four Iris projects to verify it does not cause performance regressions

or introduce failures where it succeeded before (§5.6.1). We report on the results of a

more arti�cial benchmark that compares the performance of the new ∃ rule to the rules

for other connectives (§5.6.2). This benchmark shows that the Ltac implementation from

§5.4.3 has acceptable complexity. We cannot conduct an evaluation of Diaframe, since

there exists no baseline version of Diaframe without QU.

5.6.1 Subformula Linking with iFrame in Practice
Table 5.1 contains the results of our evaluation of the improved iFrame tactic. We investi-

gate four Iris-based repositories of signi�cant size: Iris itself, ReLoC (Frumin et al., 2018,
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2021b), RustBelt (Jung et al., 2018a), and Iris’s ‘examples’ repository. We compare the

total compilation time of each repository with and without the improved iFrame. We also

report the total number of changed lines that were required to patch these repositories.

Existing proofs might break because iFrame is more powerful in the sense that it can

frame more hypotheses and even solve a goal entirely that was not solved before.

We �nd that overall, the e�ect on compilation time (0.7% faster) is hardly distin-

guishable from noise. This is a positive result because the improved iFrame is strictly

stronger, without being noticeably slower. The 2% speedup in ReLoC may be due to the

fact that the QU instance uses a Hint Extern with a pattern, meaning the framed goal

must be an existential quanti�cation syntactically. The previous Instance for framing

under existential quanti�ers would also trigger on goals that are not syntactically an

existential quanti�cation, but can be unfolded to one.

The lines of code reduction by the improved iFrame are modest, but not insigni�cant:

a reduction of 54 lines on a total of about 2700 lines using iFrame. (Note that we have

omitted the addition of ±150 lines of implementation of the QU rule in Iris.) These

numbers can be improved—we have only �xed broken proofs, not optimized existing

proofs. In some of the changed lines, a single call to the improved iFrame has replaced a

combination of �ve tactics.

We have not investigated the e�ect of the improved iFrame on writing new proofs.

However, our impression is that the additional strength of the tactic makes it easier for

users to write proofs: more parts can be automatically discharged. A frequently occurring

pattern is a proof obligation of shape Δ, 𝑃 𝑥 ` ∃𝑦. 𝑃 𝑦 ∗𝐺 with Δ ` 𝐺 requiring a manual

proof. Such situations were typically tackled with the combination ‘iExists ;iFrame’,

but a single call to the improved iFrame now su�ces.

5.6.2 Comparing Performance of Linkage Rules
We conduct a more arti�cial benchmark to check that the QU rule for ∃ performs accept-

ably in comparison to the linkage rules for other connectives—even in the presence of

large terms or many quanti�ers. We consider the following framing problem in which

we vary the number 𝑛:

𝑃 ∗𝑄 ∗ 𝑅 ∗ 𝑆 𝑡 . . . 𝑡 ` ∃𝑛 ®𝑥 . 𝐿 ∗ 𝑅 ∗𝑄 ∗ 𝑆 ®𝑥 ∗ 𝑃 .

Here, ∃𝑛 is an 𝑛-ary existential quanti�cation (®𝑥 has length 𝑛), and 𝑆 has 𝑛 arguments. We

consider two variants (1) frame (small) 𝑃 away, which preserves all𝑛 existential quanti�ers

in the goal; and (2) frame (large) 𝑆 𝑡 . . . 𝑡 away, which instantiates all quanti�ers in the

goal. These cover the frequent use cases of keeping a quanti�er and instantiating it.

To compare the rule for existentials to other connectives, we consider the following

variant:

𝑃 ∗𝑄 ∗ 𝑅 ∗ 𝑆 𝑡 . . . 𝑡 ` 𝑂𝑛 (𝐿 ∗ 𝑅 ∗𝑄 ∗ 𝑆 ?®𝑥 ∗ 𝑃),

Here,𝑂 is an element of {∀ . ·, (𝑅 −∗ ·), (𝑅 ∗ ·), (𝑅∧ ·)}.8 We consider the same variants as

before (frame 𝑃 or frame 𝑆). In the second variant we must also unify 𝑆 ?®𝑥 with 𝑆 𝑡 . . . 𝑡 .

The previous problem is thus very similar to this one, apart from the connectives being

framed under.

8
We do not consider disjunction, since its framing rule in Iris requires a link on both sides.
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We pick 𝑡 to be a term of signi�cant size, and test the performance with 𝐿 being a

large and small term. This means we compare the performance of four framing problems

in total: framing (small) hypothesis 𝑃 or (large) hypothesis 𝑆 in a goal with a small or

large 𝐿.

Results. The benchmarks show that the performance of the QU rules for ∃ are as fast
as those for other connectives in 3/4 problems, namely when framing large 𝑆 and/or large

𝑃 . When framing small 𝑃 in large 𝐿 and 𝑛 < 60, the performance is about equal to that

of ∧, and up to four times as slow as −∗ (the fastest connective). At 𝑛 = 150, the QU rules

for ∃ are twice as slow as ∧, and seven times slower than −∗. We have included some of

the running times for the small hypothesis, small goal framing under ∃ and ∧ below:

𝑛 6 12 30 60 150

runtime for ∃ (seconds) 0.07 0.15 0.33 0.9 5.5

runtime for ∧ (seconds) 0.07 0.13 0.32 0.76 2.8

This shows that the QU rules perform acceptably, even with 𝑛-ary existential quanti�-

cation for large 𝑛 (the authors have not seen 𝑛 > 10 in existing Iris projects). There is

an observable di�erence in performance only when 𝑛 ≥ 60, but we conjecture that the
time Coq spends on proof checking is a much more in�uential factor than the runtime of

iFrame.

5.7 Related Work

Subformula linking. The notion of subformula linking has been introduced as part the

Profound system by Chaudhuri (2013). Profound is a predecessor of ProfInt (Chaudhuri,

2021, 2023) that involves �rst-order classical linear logic instead of �rst-order intuitionistic

logic.

Prior works on subformula linking di�er mostly from this work in their application.

The ProfInt (Chaudhuri, 2021, 2023) and Actema (Donato et al., 2022) gesture-based

interactive theorem provers use subformula linking to simplify proof states by letting the

user graphically indicate what subformulas to link. (A further predecessor of gesture-

based theorem proving is ‘proof by pointing’ by Bertot et al. (1994).) Aside from the

di�erence in applications, there are some notable di�erences in the formal systems:

• Besides links between hypothesis and goal, ProfInt and Actema also consider links

between two hypotheses. ProfInt even considers links within a single formula. We

do not consider such links, because hypothesis-goal links are the only relevant links

for our application of backward-chaining proof search—which always takes the goal

as starting point. Hypothesis-hypothesis links are essential for the completeness

of ProfInt.

• The original presentation of Pro�nt (Chaudhuri, 2021) uses a weaker subformula

linking rule than R∨. This weaker rule makes the rule order immaterial for the

propositional fragment, but sometimes produces links that are harder to prove

than links with R∨. The rule order still matters when two hypotheses are linked.
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• Actema supports ‘rewriting’ through subformula linking with an additional linkage

rule 𝑥 � 𝑦 f [𝑃 𝑥] � 𝑃 𝑦. Such a rule can be added as an instance to a QU-based

system. It would be interesting to explore applications of such linkages, especially in

combination Coq’s generalized rewriting (Sozeau, 2009), which is used extensively

in Iris to rewrite with relations other than equality.

Framing in separation logic. Various approaches have been proposed to (automati-

cally) solve the ‘framing’ or ‘frame inference’ problem (Kassios, 2006; Berdine et al., 2005)

in separation logic.

The VST framework in Coq (Cao et al., 2018) comes with a cancel tactic for frame

inference, which contrary to Iris’s iFrame does not proceed below existential quanti�ers

in the goal. VST also provides the more powerful entailer! tactic (Appel, 2023, §42),

which uses cancel after suitably normalizing and rewriting the proof goal. These can

both be used to fully solve an entailment or make partial progress in an interactive proof.

The automation of the Bedrock (Chlipala, 2011, §3, step 6) and Re�nedC (Sammler

et al., 2021, §4, step 5) frameworks in Coq instantiates existentially quanti�ed goals with

evars after having eliminated existentials in hypotheses. This is an e�ective approach

for the veri�cation of sequential problems. However, in the context of the veri�cation of

concurrent programs in Iris, existentials require a more careful treatment, as also argued

in Chapter 2. We achieve this through subformula linking.

Calcagno et al. (2009b) describe a shape-analysis based procedure for inferring e.g.,

pre- and postconditions of Hoare triples. They provide recursive rules to solve the framing

problem (‘abductive inference’) in a specialized separation logic. Their ↦→-match rule

(Calcagno et al., 2009b, Figure 1) handles existential quanti�ers on points-to resources, in

a way similar to ProfInt’s R∃. This is less general than R∃𝑄𝑈 , but works appropriately

since there can only be one points-to resource for a given location.

5.8 Future Work

We have presented QU, an approach for subformula linking under quanti�ers using

uni�cation, and demonstrated its use by improving Iris’s iFrame tactic for resource

framing. We see several possible directions for future work.

Both Actema and ProfInt come with prototypes for graphical interactive theorem

proving. It would be interesting to build such a prototype for QU, or to change an existing

prototype to use the QU rules for quanti�ers.

All systems we have considered here (Actema, ProfInt, and QU) leave the order

of linking rules unspeci�ed, while these are crucial for the quality of the resulting

simpli�cation. In particular, the systems use a heuristic to decide whether to prioritize

left- or right-rules. It would be interesting to design a formal inference system that rules

out information loss entirely.
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Chapter 6

Conclusions and Future Work

In this thesis, we studied the veri�cation of �ne-grained concurrent programs—crucial

building blocks of modern operating systems. Fine-grained concurrent programs are

notoriously hard to get right, and play an important role in the software stack, so

verifying them is of utmost importance. Existing research has focused either on automatic

veri�cation of these programs, or on foundational (i.e., highly trustworthy) veri�cation

of these programs. This thesis presents the �rst work that allows both automatic and

foundational veri�cation of �ne-grained concurrent programs.

The main contributions of this thesis are proof search strategies for Iris’s concurrent

separation logic, and implementations of these in the Diaframe library for proof automa-

tion. We used Diaframe to prove functional correctness and linearizability of various

examples, showing that the proof burden of veri�cation with Diaframe is competitive to

existing automated tools while adding foundational guarantees.

The proof search strategies we developed share four key ideas. That is, they all

do goal-directed proof search, try to avoid backtracking entirely, are extensible with

rules �tting a general format, and use subformula linking to detect cases where a rule

is almost applicable. The resulting strategies show that at least for the veri�cation of

�ne-grained concurrent programs, foundational methods need not be less automated

than non-foundational (i.e., SMT-solver based) methods.

Nevertheless, verifying �ne-grained concurrent programs remains challenging. We

see several directions for future work.

Fundamental improvements. So far, we have focused on automating proofs of given

speci�cations in existing program logics. We see two possibilities for fundamentally

improving this work�ow.

Firstly, coming up with good speci�cations is often one of the hardest parts of concur-

rent program veri�cation. Methods for automatically inferring program invariants could

make veri�cation signi�cantly less labor-intensive. Calcagno et al. (2009a) describe a

method to infer lock invariants in a relatively simple concurrent separation logic. Scaling

inference to invariants for �ne-grained concurrent programs could be very useful.

Secondly, the program logic we have used still has room for improvement. One

improvement relates to programs that feature so-called ‘future dependent linearization

points’. Examples are the Michael–Scott queue (Michael and Scott, 1996) and the RDCSS
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algorithm (Harris et al., 2002). The veri�cation of these programs in Iris is tricky since

certain information is required at one point, while only becoming available later. Jung

et al. (2020) successfully veri�ed the RDCSS algorithm by introducing prophecy variables

to Iris. Although this does the job, the required reasoning appears to be fundamentally not

goal-directed, and so not amenable to our current proof automation strategies. Meyer et al.

(2023b, 2022) have developed a separation logic that can perform this kind of reasoning

without prophecy variables—using ‘temporal interpolation’. Their tool plankton achieves

an impressive degree of automation using this technique. In its current form, temporal

interpolation sacri�ces some compositional reasoning. It would be very interesting to

see if this restriction could be lifted, and to get access to temporal interpolation in Iris.

Domain-speci�c improvements to automation. One of the key features of our

proof automation strategies is its extensibility: support for new resources or new goals

can be added by users. However, ideally one should not need to add explicit support for

relatively simple resources and goals—they should be supported out-of-the-box.

For example, Diaframe’s support for proving ‘pure’ sideconditions (i.e., non-separation

logic propositions, such as equalities) is limited and relatively ad-hoc. It would be useful

to improve this solver, or to replace it with a stronger solver. Recent literature provides

several candidates: tools for reconstructing proofs from SMT solvers like SMTCoq (Ekici

et al., 2017), but also proof-assistant based approaches such as itauto (Besson, 2021),

sauto (Czajka, 2020), and domain-speci�c solvers for e.g., lists (Wang and Appel, 2023).

Another possible area of improvement is Diaframe’s support for resources that de-

scribe recursive data structures. For non-recursive data structures, Diaframe can infer

most proof rules automatically by unfolding de�nitions. This is no longer possible when

the de�nitions are recursive, but we suspect one could come upwith other techniques. Per-

haps the work of Ta et al. (2018) could be further investigated, which describes techniques

to automatically derive proof rules for inductive heap predicates.

Ease of use. User friendliness is crucial in order for proof automation to be an e�ective

tool. We see a couple of directions in which this could be improved. We will focus on

improving ease of use of the automation inside the proof assistant, and thereby mostly on

the ease of use for researchers/other experts. One could also explore creating a front-end

tool for Diaframe in the style of auto-active veri�cation (Leino and Moskal, 2010), as also

done in Re�nedC (Sammler et al., 2021).

When verifying a program, the automation proceeds by symbolically executing it. If

the automation gets stuck at one point, it can be unclear what program path caused the

stuck veri�cation. Reporting a summary of this could be helpful for debugging.

We have designed our proof search strategies so that proofs can be developed with a

mix of interactive and automatic steps. Interactive proofs usually give explicit names to

variables and hypotheses, to improve readability. This is somewhat more di�cult for the

automatic steps, since the generated variables and hypotheses are harder to predict. We

have some initial experiments that do this, which should be further evaluated.

Diaframe’s tutorial material could also be expanded and improved. These are currently

focused on verifying �ne-grained concurrent programs, while some researchers may

want to use the automation for other ends.

Applications to other Iris projects. There have been a couple of research projects

that use Diaframe to obtain some degree of automation. For example, Moine et al. (2023)
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used Diaframe to implement symbolic execution tactics for their custom separation logic

for reasoning about garbage collection. Moine et al. (2024) did similarly for their custom

separation logic for reasoning about disentanglement. Jung et al. (2023) have experiments

showing that their modular speci�cations for hazard pointers can be semi-automatically

veri�ed with Diaframe. Finally, Lorenzen et al. (2024) used Diaframe to semi-automatically

verify that functional and imperative (sequential) algorithms on trees are equivalent.

Diaframe’s proof search strategy is in principle applicable to any Bunched Implication

logic (O’Hearn and Pym, 1999; Pym, 2002) that satis�es the laws of the Iris Proof Mode

(Krebbers et al., 2018). This has been demonstrated in Park et al. (2024) (work by the

author not included in this thesis), where Diaframe was used to help verify a form of

linearizability under weak memory. Recent work recasting VST’s program logic for C

programs (Appel et al., 2014) into an IPM compatible Bunched Implication logic (Mansky

and Du, 2024) could therefore also make use of our proof search strategies. Another ex-

citing advancement is an Iris-inspired separation logic that guarantees deadlock-freedom

(Jacobs et al., 2024). We expect that Diaframe could be of use here, and in other works

that build on the Iris Proof Mode. It would be interesting to investigate this further.

Applications to general proof automation. We conjecture that the key ideas behind

Diaframe could also be of use to improve automation for proof assistants in general, i.e.,

in higher-order (intuitionistic) logics instead of higher-order separation logics. We expect,

perhaps counterintuitively, that switching to the ‘simpler’ intuitionistic setting will make

it harder to automate. Substructurality is of help to the automation: since resources do

not usually appear twice, any way to obtain a required resource is usually the correct

way. Since this is no longer true in an intuitionistic setting, any form of proof automation

needs an approach for when required propositions are obtainable in multiple ways.

Finally, as discussed in Chapter 5, there are still some open questions relating to using

subformula linking in proof automation. In particular, when both hypothesis and goal are

composite formulas with a shared atom, what is the ‘best’ order of applying subformula

linking rules? In other words, what order of applying subformula linking rules results in

a link that is easiest to prove? Knowing such an order in advance would prevent needless

(and unwanted) backtracking on all the possible orderings.
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Summary

Concurrent programs are notoriously hard to get right, and play an important role in

the modern software stack. This is especially true for �ne-grained concurrent programs,

which allow a lot of interference from threads running in parallel. It is therefore of utmost

importance to verify that �ne-grained concurrent programs are correct. Existing research

has focused either on automatic veri�cation of these programs, or on foundational (i.e.,

highly trustworthy) veri�cation of these programs. This thesis presents the �rst work that

does both: automatic and foundational veri�cation of �ne-grained concurrent programs.

To verify these programs, we use concurrent separation logic. This program logic excels

in compositional reasoning about �ne-grained concurrency. Concurrent separation logic

can be used to establish functional correctness of a program (i.e., that its input-output

behavior is correct), and to establish linearizability of a program (i.e., that its e�ects

appear to take place instantaneously). Moreover, compositionality allows us to use the

veri�cation of a concurrent library to verify client programs abstractly: without having

to look at the implementation details of the library.

Speci�cally, we use the Iris framework for higher-order concurrent separation logic.

Iris has been used to successfully verify various complicated �ne-grained concurrent

programs. Furthermore, Iris is foundational: it is embedded in the proof assistant Coq,

and therefore highly trustworthy. However, verifying �ne-grained concurrent programs

in Iris is labor-intensive. Users have to provide detailed proofs to convince the system

that a program is indeed correct.

The main contributions of this thesis are proof search strategies for Iris’s concurrent

separation logic, and implementations of these in the newly developed Diaframe library

for proof automation. Diaframe can (semi-)automatically construct proofs of functional

correctness and linearizability for various examples, while retaining the strong guarantees

of working in a proof assistant. Moreover, Diaframe’s proof automation is explicitly

designed to be predictable, �exible, extensible, and to allow partial progress. This ensures

that the automation is as helpful as possible for the user, even for failing veri�cations.

We evaluated Diaframe by comparing its proof burden to that of existing automated

tools. The evaluations show that Diaframe’s automation is competitive with the state of

the art, while adding foundational guarantees.
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Samenvatting

Gelijktijdige (‘concurrent’) programma’s bevatten nogal eens subtiele fouten, terwijl

ze een belangrijk element zijn van moderne software-systemen. Dit geldt des te meer

voor �jnmazige (‘�ne-grained’) gelijktijdige programma’s: programma’s waar gelijktijdig

draaiende subprogramma’s voor veel interferentie kunnen zorgen. Het is daarom van

belang om de correctheid van �jnmazige gelijktijdige programma’s te veri�ëren. Eerder

onderzoek heeft zich ofwel gewijd aan de automatische veri�catie van zulke programma’s,

ofwel aan zeer betrouwbare (‘foundational’) veri�catie van zulke programma’s. In dit

proefschrift presenteren we het eerste onderzoek dat beide doet: automatische en zeer

betrouwbare veri�catie van �jnmazige gelijktijdige programma’s.

Om deze programma’s te veri�ëren gebruiken we gelijktijdige scheidingslogica (‘con-

current separation logic’). Deze programma-logica blinkt uit in het op een compositionele

manier redeneren over �jnmazige gelijktijdige programma’s. Met behulp van gelijktij-

dige scheidingslogica kunnen we laten zien dat een programma functioneel correct is

(i.e., dat het invoer-uitvoer gedrag van het programma klopt), en dat een programma

lineariseerbaar is (i.e., dat de e�ecten van het programma op een instantaan moment

lijken plaats te vinden). De compositionaliteit van de logica stelt ons verder in staat om

programma’s te veri�ëren die gebruik maken van geveri�eerde bibliotheken (‘libraries’)

van gelijktijdige programma’s, op een abstracte manier : dat wil zeggen, zonder te hoeven

kijken naar de implementatie van de bibliotheek.

Om precies te zijn gebruiken we het Iris raamwerk voor hogere-orde gelijktijdige

scheidingslogica. Met behulp van Iris is de correctheid van verschillende lastige �jnmazige

gelijktijdige programma’s vastgesteld. Verder is Iris zeer betrouwbaar, aangezien het

raamwerk is ingebed in de bewijsassistent Coq. Jammer genoeg is het veri�ëren van

�jnmazige gelijktijdige programma’s in Iris veel werk. Gebruikers moeten gedetailleerde

bewijzen aanleveren om het systeem te overtuigen dat een programma correct is.

De hoofdbijdragen van dit proefschrift zijn strategieën om bewijzen te zoeken in de

gelijktijdige scheidingslogica van Iris, en implementaties van deze strategieën in Dia-

frame, een nieuw ontwikkelde bibliotheek voor bewijsautomatisering. Diaframe kan

(semi-)automatisch bewijzen dat diverse programma’s functioneel correct of lineariseer-

baar zijn, terwijl het de sterke garanties behoudt van het werken in een bewijsassistent.

De bewijsautomatisering van Diaframe is ontworpen om voorspelbaar, �exibel en uit-

breidbaar te zijn, en om gedeeltelijke voortgang te kunnen maken in een bewijs. Dit zorgt

er voor dat de automatisering zo behulpzaam is als mogelijk, zelfs als veri�catie faalt.

We hebben Diaframe geëvalueerd door de bewijslast van Diaframe te vergelijken

met die van bestaande geautomatiseerde tools. Dit laat zien dat de automatisering van
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Diaframe competitief is met recent onderzoek, terwijl het sterkere garanties geeft wat

betreft betrouwbaarheid.
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Coq code in a Git repository, permanently available on Zenodo.

https://doi.org/10.5281/zenodo.6330596

• Chapter 3: Ike Mulder and Robbert Krebbers (2023).

Proof Automation for Linearizability in Separation Logic.

Coq code in a Git repository, permanently available on Zenodo.

https://doi.org/10.5281/zenodo.7712620

• Chapter 4: Ike Mulder, Łukasz Czajka, and Robbert Krebbers (2023).

Beyond Backtracking: Connections in Fine-Grained Concurrent Separation Logic.

Coq code in a Git repository, permanently available on Zenodo.

https://doi.org/10.5281/zenodo.7799173

• Chapter 5: Ike Mulder and Robbert Krebbers (2023).

Uni�cation for Subformula Linking under Quanti�ers.

Coq code in a Git repository, permanently available on Zenodo.

https://doi.org/10.5281/zenodo.10364816

The development version of Diaframe (Coq code in a Git repository) is available at

https://gitlab.mpi-sws.org/iris/diaframe. A frozen version of Diaframe is also

available at https://doi.org/10.5281/zenodo.14317899.

1https://www.ru.nl/en/institute-for-computing-and-information-sciences/research, bottom of

page, last accessed April 18th, 2024
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