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Diaframe, last year

Automation for fine-grained concurrency:
I standard WP goals

I support for invariants P N

I support for ghost state a 𝛾
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Diaframe, updates

1. Extensible for other goals

i.e., logical atomicity, contextual refinement

2. Be�er support for disjunctions

3. Available on opam: coq-diaframe
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Disjunctions in Iris verifications

A�er opening invariant I and symbolic execution:

Δ ` |V I ∗ wp e {Φ}
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Disjunctions in Iris verifications

A�er opening invariant I1 ∨ I2 and symbolic execution:

Δ ` |V (I1 ∨ I2) ∗ wp e {Φ}
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Disjunction example

∀m : Z. 7 ≤ m ≤ 13 → m ≡ 0 (mod 5) →
ℓ ↦→ m ` ℓ ↦→ 10 ∨ ℓ ↦→ 15
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Overview

1. Backtracking is unwanted

2. Case distinctions make disjunctions harder

3. Idea: find connections from hypothesis to goal

application to our example

4. Limitations
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Backtracking proof search on disjunctions

As done by auto, old Diaframe, Caper:

solved or unsolved

...

Δ ` P
Δ ` P ∨ Q

try-left

if unsolved: go back and try right
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Disjunction example, try le�

∀m : Z. 7 ≤ m ≤ 13 → m ≡ 0 (mod 5) →
` pm = 10q

ℓ ↦→ m ` ℓ ↦→ 10

diaframe-hint

ℓ ↦→ m ` ℓ ↦→ 10 ∨ ℓ ↦→ 15

try-left
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Disjunction example, try le�

What if automation cannot prove

7 ≤ m ≤ 13 → m ≡ 0 (mod 5) → m = 10?

. . . since lia requires a special incantation for mod?
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Disjunction example, try le�

What if automation cannot prove
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Disjunction example, try right

∀m : Z. 7 ≤ m ≤ 13 → m ≡ 0 (mod 5) →
` pm = 10q % proof fails

ℓ ↦→ m ` ℓ ↦→ 10

diaframe-hint

ℓ ↦→ m ` ℓ ↦→ 10 ∨ ℓ ↦→ 15

try-left
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Disjunction example, try right

∀m : Z. 7 ≤ m ≤ 13 → m ≡ 0 (mod 5) →
ℓ ↦→ m ` ℓ ↦→ 15 %

ℓ ↦→ m ` ℓ ↦→ 10 ∨ ℓ ↦→ 15

try-right

. . . goal is le� unsolved
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Disjunction example, try right

∀m : Z. 7 ≤ m ≤ 13 → m ≡ 0 (mod 5) →
ℓ ↦→ m ` ℓ ↦→ 15 %

ℓ ↦→ m ` ℓ ↦→ 10 ∨ ℓ ↦→ 15

try-right

. . . goal is le� unsolved
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If backtracking proof search fails..

1. Reason of failure o�en unclear

2. No canonical remaining goal for user

Bad for interactive proofs
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Overview

1. Backtracking is unwanted

2. Case distinctions make disjunctions harder

3. Idea: find connections from hypothesis to goal

application to our example

4. Limitations
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Disjunction example: it gets worse

∀m : Z. 7 ≤ m ≤ 18 → m ≡ 0 (mod 5) →
ℓ ↦→ m ` ℓ ↦→ 10 ∨ ℓ ↦→ 15

Backtracking directly is hopeless!

case distinction m = 10 ∨m ≠ 10 is not very obvious
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Disjunctions in classical logic

Δ, ¬Q ` P
Δ ` P ∨ Q

∨-intro-l

Δ ` P ∨ Q

Δ,¬Q ` P
¬-elim

∨-intro-l and commutes with proof rules! i.e., with:

Δ, P ` R Δ,Q ` R
Δ, P ∨ Q ` R

∨-elim
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Disjunctions in classical logic

P,¬Q ` P
P ` Q ∨ P

P,¬P ` Q Q,¬P ` Q
P ∨ Q,¬P ` Q
P ∨ Q ` Q ∨ P
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. . . but Iris is inherently non-classical

Separation logics are incompatible with LEM if:

1. a�ine; or

2. step-indexed

⇒ we need to think of something else
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Overview

1. Backtracking is unwanted

2. Case distinctions make disjunctions harder

3. Idea: find connections from hypothesis to goal
application to our example

4. Limitations
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Goal

Find a deterministic rule for disjunctions

which postpones the choice of disjunct, until

any required case distinctions become apparent
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Inspiration: connection calculus

Connection calculus: complete proof search procedure for

hoi intuitionistic logic

Relies on finding connections:

A → (B ∨ C ),A ` C ∨ B

from hypothesis to goal
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Disjunction example, revisited

∀m : Z. 7 ≤ m ≤ 18 → m ≡ 0 (mod 5) →

` pm ≠ 10q −∗ ℓ ↦→ m −∗ ℓ ↦→ 15

` ∨ (−∗ ℓ ↦→ 15)

ℓ ↦→ m ` ℓ ↦→ 10 ∨ ℓ ↦→ 15

Diaframe thinks: HINT: pmq



21

Disjunction example, revisited

∀m : Z. 7 ≤ m ≤ 18 → m ≡ 0 (mod 5) →

` pm ≠ 10q −∗ ℓ ↦→ m −∗ ℓ ↦→ 15

` ∨ (−∗ ℓ ↦→ 15)

ℓ ↦→ m ` ℓ ↦→ 10 ∨ ℓ ↦→ 15

Diaframe thinks: HINT: ℓ ↦→ m ∗ pm = 10q ` ℓ ↦→ 10



21

Disjunction example, revisited

∀m : Z. 7 ≤ m ≤ 18 → m ≡ 0 (mod 5) →

` pm ≠ 10q −∗ ℓ ↦→ m −∗ ℓ ↦→ 15

` pm = 10q ∨
(
ℓ ↦→ m −∗ ℓ ↦→ 15

)
ℓ ↦→ m ` ℓ ↦→ 10 ∨ ℓ ↦→ 15

Diaframe thinks: HINT: ℓ ↦→ m ∗ pm = 10q ` ℓ ↦→ 10



21

Disjunction example, revisited

∀m : Z. 7 ≤ m ≤ 18 → m ≡ 0 (mod 5) →

` pm ≠ 10q −∗ ℓ ↦→ m −∗ ℓ ↦→ 15

` pm = 10q ∨
(
ℓ ↦→ m −∗ ℓ ↦→ 15

)
ℓ ↦→ m ` ℓ ↦→ 10 ∨ ℓ ↦→ 15

Diaframe thinks: HINT: ℓ ↦→ m ∗ pm = 10q ` ℓ ↦→ 10



21

Disjunction example, revisited

∀m : Z. 7 ≤ m ≤ 18 → m ≡ 0 (mod 5) →

` pm ≠ 10q −∗ ℓ ↦→ m −∗ ℓ ↦→ 15

` pm = 10q ∨
(
ℓ ↦→ m −∗ ℓ ↦→ 15

)
ℓ ↦→ m ` ℓ ↦→ 10 ∨ ℓ ↦→ 15

Diaframe thinks: HINT: pmq



21

Disjunction example, revisited

∀m : Z. 7 ≤ m ≤ 18 → m ≡ 0 (mod 5) →

` pm ≠ 10q −∗ ℓ ↦→ m −∗ ℓ ↦→ 15

` pm = 10q ∨
(
ℓ ↦→ m −∗ ℓ ↦→ 15

)
ℓ ↦→ m ` ℓ ↦→ 10 ∨ ℓ ↦→ 15

Diaframe thinks: HINT: ` pm = 10q ∨ pm ≠ 10q



21

Disjunction example, revisited

∀m : Z. 7 ≤ m ≤ 18 → m ≡ 0 (mod 5) →
` pm ≠ 10q −∗ ℓ ↦→ m −∗ ℓ ↦→ 15

` pm = 10q ∨
(
ℓ ↦→ m −∗ ℓ ↦→ 15

)
ℓ ↦→ m ` ℓ ↦→ 10 ∨ ℓ ↦→ 15

Diaframe thinks: HINT: ` pm = 10q ∨ pm ≠ 10q



22

Disjunction example, revisited
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Disjunction example, revisited

If lia was not improved, remaining goal is:

∀m : Z. 7 ≤ m ≤ 18 → m ≡ 0 (mod 5) →
m ≠ 10 → m = 15 "
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Implementation challenges

How to define and detect a ‘connection’? Account for:

I modalities

I quantification

When to commit to a disjunct? as late as possible, but..
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Overview

1. Backtracking is unwanted

2. Case distinctions make disjunctions harder

3. Idea: find connections from hypothesis to goal

application to our example

4. Limitations
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Limitations

Will commit to wands in disjunctions

ℓ ↦→ 15 ` (P −∗ ℓ ↦→ 10) ∨ ℓ ↦→ 15 %

May still commit too early

%

Order of disjuncts ma�ers

ℓ ↦→ 15 ` ℓ ↦→ 15 ∨ (∃m. ℓ ↦→ m ∗ pm = 10q)
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Limitations

Will commit to wands in disjunctions

May still commit too early

Order of disjuncts ma�ers

. . . Diaframe provides some tactics to help with this
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Conclusion

Diaframe, proof automation library for Iris:

1. Extensible for other goals

i.e., logical atomicity, contextual refinement

2. Be�er support for disjunctions

by finding connections from hypothesis to goal

3. Available on opam: coq-diaframe
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�estions?
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Hint definition, simple

H, [L] � A ∗ [U] | [D] := H ∗ L ` (A ∗ U) ∨ D
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Hint application, simple

H, [L] � A ∗ [U] | [D]

Δ `
©­­­«L ∗

U −∗ G1

∧
D −∗ ((A ∗ G1) ∨ G2)

ª®®®¬ ∨ (H −∗ G2)

Δ,H ` (A ∗ G1) ∨ G2
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Hint definition, full

H, [®y; L] �
[

|VE3 E2

]
®x ;A ∗ [U] , [D] :=

∀®y . H ∗ L ` |VE3 E2 (∃®x . A ∗ U) ∨ D
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Hint application, ‘full’

H, [®y; L] �
[

|VE3 E2

]
®x ;A ∗ [U] , [D]

Δ ` |VE1 E3

©­­­«∃®y . L ∗
∀®x . U −∗ G1

∧
D −∗ ((∃®x . A ∗ G1) ∨ G2)

ª®®®¬ ∨ (H −∗ G2)

Δ,H ` |VE1 E2 (∃®x . A ∗ G1) ∨ G2


